CHAPTER 4

High Order Finite Difference Migration

Offset angles in a shot profile can become high even when the dip of the
subsurface reflectors is small. If the Cartesian method for the migration of
profiles is to yield a high quality image of the subsurface, then the migration
scheme used must be able to migrate large offset angles. If a finite difference
migration program is used, then the high offset angles require the use of high

order migration operators.

Migration operators of arbitrary order can be built up from operators of lower
order with a recursion. This chapter's first section introduces the wave equation
for a pressure wave field. Four one-way wave equations can be extracted from
the two-way wave equation for pressure, each propagating waves in a different
vertical or temporal direction. The extraction uses a set of operators with well-
defined causality. The second section of this chapter discusses derivatives and
causality, while the one-way wave equation for the migration of an up-going wave
field is derived in a third. The four sections that follow discuss computer
implementations of the migration equation, building on a scheme first proposed by
Ma (1982). The chapter concludes with displays of impulse responses and an

analysis of the stability of finite difference downward continuation.

The pressure wave equation and acoustic media

One-way wave equations are the foundation of finite difference migration
procedures. Finite differencing is done in a discrete world and requires the
solution of a banded system of linear equations. Before obtaining the matrix

coefficients, the proper one-way wave equation for migrating up-going waves will



be derived.

The starting point is the wave equation for a pressure wave field P(x,z,t) in
an acoustic medium. The medium is characterized by its density p(x,2) and bulk
modulus «(z,2z,t). These two functions define the medium's acoustic velocity and
slowness, denoted by V(z,z,t) and A(z,z,t), respectively. The time dependence
in ¥V, A, and ¥ can be made to account for the visco-acoustic effects of
dissipative wave equations. For causality, the reciprocal of x will have to vanish

for ¢ < 0. The wave equation for P,
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governs the propagation of acoustic waves when combined with appropriate

boundary conditions.

Second order boundary conditions must accompany equation (1) for it to
have a unique solution. One such boundary condition is obtained by specifying
values for P and its normal derivative on the surface z = O and by requiring that
P and its derivatives vanish when either z or |z | »~. Unfortunately, insufficient
information is available for application of this boundary condition. The wave field
P(z,z,t) is known at z = 0, but the normal derivative of P(z,z,t) on 2 =0 is
unmeasured. It is expedient, therefore, to consider one-way wave equations that
support propagation in one vertical direction. Consideration of one-way wave
equations will involve assigning causality to the derivatives rearrangement of the

wave equation

Derivatives and causality

The derivatives in equation (1), will be handled first. A one-way wave
equation has a causal character. This character must be respected by the

derivatives of the differential equation. Thus, more care must be taken in defining
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a derivative than is taken in elementary calculus texts. In such texts, it is
taught that the derivative of a function f(t), denoted by DCf (t) is defined

when both

UMD —F () e o F()=F (£=At)
Dy (t) = fim At and  —DEf(t) = fim, Y;

exist and are equal. Here, DOf(t) = D, f(t) = —~Dff (t). This definition really

involves three kinds of derivative operators: anti-causal derivatives like —DtH, ]
causal derivatives like D;, and derivatives like D? that exist when both —D/ and

D, exist and are equal.

The one-way wave equation is peculiar in that derivatives of the Dto type
are not relevant. The other two types of derivatives, the causal operators (like
D; ) and the anti-causal operators (like —Dff), are useful. Defining positive

increments Az, Az, and Af, six partial derivatives can be defined by the six

equations

D f(z,2,t) = LZ2) S @=b22,t) | pupiy 4y = Jz4hz2,)=f (2,2,t)
Az A.’I:

D.f(z,z ) = LE2DSE202D) | pitp (g gy = LTz the )] (@2,0)
AZ AZ

Dy f(z,z,t) = f(x,z,t)—jl;t(x,z,t—At) L DT (z,2,8) = f(x,z,t+A22—f(x,z,t)

where limiting processes are performed if necessary. The H superscript denotes
Hermitian conjugation. To see why this should be so, consider the case of z-
differentiation in a discrete space consisting of an infinite set of evenly spaced
grid points. In this space there are no boundaries to introduce anomalous values
into the differencing matrices. D,, for instance, is a matrix operator with a
diagonal of 1/Az's and a subdiagonal of —1/Ax's. The negative of the
transpose of D, is a matrix that has a diagonal of —1/ Ax's and a superdiagonal

of 1/ Az's. Thus, Df has the form required for an anti-causal derivative.
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The =z derivatives discussed above give a consistent estimate of the
derivative as Ax approaches zero. No notational distinction is made between
operations in a discrete world and differential operations in a continuum. Other
discrete operators with well-defined causality have the proper limit as Az
approaches zero, however. Unless explicitly indicated, the notation used in this
thesis will not distinguish between continuous partial derivative operators and the
various discrete differential operators that happen to have this continuous
operator as a limiting value for small discretization rates. This practice reduces
the number of symbols and simplifies most of the functional analysis. For
example, it will turn out to be useful to consider an x derivative of the form

-1

D f(z,z,t) = 1 p|j-1-26+Q-4H 7 , fz,z,t)

Az 1+(1-48)172

where B is a causal operator and 8 is a real and positive constant that is less

than 1/4. The constant beta is chosen to increase the bandwidth of the
approximation to the continuous derivative. The operator 5 has a matrix
representation that has a diagonal of 1's and a subdiagonal of -1's. Thus, the

matrix representation of 5 is

This matrix operates on a vector defined at regularly spaced, discrete points
along the x axis, but whose z and ¢ dependence may be either continuous or
discrete. Given this definition of B, the restriction 0<g<1/ 4 will guarantee the

existence of the causal inverse operator
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derivative can be obtained by setting 8 = 1/ 4.

The new D, can be used to build a Hermitian second derivative operator that
provides a good approximation to the continuous second derivative over a wide

range of wavenumbers. Forming the product —DJD,, simple algebra shows that

-1
(Az)?
where use has been made of the result that B + BH = BHp = BBH. If the

~DED, f(z,2,t) =

-1
BHB[I -8 BHB] flz,z,t)

operator T = BR¥, is defined, then the matrix representation of 7 will have 2's
on its diagonal and -1's on both its super- and sub-diagonals. Thus T, in matrix

form, looks like

1 -1
-1 2 -1
-1 2 -1
T =
-1 2 -
-1 1

The second derivative operator can be approximated with a rational function of
T. Substituting a T for every BH B in the expression for —D;.”D,f(z,z,t), leads

to the equality

it
(Az)?

Finally, it may be desirable to carry out time differentiation in the frequency

—DHD, f (z,2,t) = T {1 - ﬁT]“f(z,z,t)

domain. This is because frequency is an eigenvalue of the wave equation
operator, so the frequency components of a wave will propagate independently of
one another. Use of this independence property decreases the 1/0 costs of a
migration program, and increases the accuracy and bandwidth for which functions

can be differentiated. If the Fourier transform of f(t) is defined by

F(w) = fdt et f(t)

then the inverse of causal integration is equivalent to multiplication by iw+g in
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the limit £¢-20+. To the extent that inversion of causal integration is causal
differentiation, multiplication by iw+¢g is the frequency domain equivalent to
causal differentiation in the time domain. Similarly, anti-causal differentiation is

roughly equivalent to multiplication by the complex factor iw—=¢.

One-way anti-causal wave equations

Migration of upwards traveling waves is a process that is anti-causal in time
so —D{ and not D, will be used for temporal differentiation. With the notation and
concepts introduced in the last section the two-way wave equation for

propagating backwards in time can be written as

1 1
~pflpp-pilpp-Lapyip =0
P P K
where the asterisk denotes a convolution with respect to time. It will be
convenient to work in the frequency domain so that the time domain convolution
does not complicate the algebra. To avoid the introduction of unnecessary new
symbols, let P stand for both the pressure wave and its Fourier transform with

respect to time. Define

K(z,2,w)

so that the wave equation can be written

R B - {dt J,C—(x,z,t) g tot

1 1 1 ..
—Dfp—DzP - D,{fp—D,P - R—(zw-—s)zP =0
Since K may be frequency dependent, both phase velocity and acoustic slowness

may be frequency dependent.

With a change of the dependent variable on which the wave equation
operates, the parameters of the medium can be grouped together. This change
will be advantageous when continued fractions are introduced into the discussion,

because one consequence will be that the coefficients of the continued fraction
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will commute with one another. To make the change of variable, premultiply
equation (1) by K'“? and introduce P/ K!”. Since the extrapolation will be in the
z direction the =z and ¢ derivatives are transposed to the right side of the

equality

£ _
KJ /2

-KUZDf;—Dz Kl = Kz/eDzH%__Dz K12 P

K12 K172 (2)

To get a one-way wave equation from equation (2), the left side of the
equality must be first order in either D, or D¥. For downward continuation, which
is causal in depth, the left side of the equality must contain D, only. Following

Clayton (1981), make the approximation

1 P ul P
KI/ZDZ _[;—-DZKI/ZKI/g N __KI/BDz p_Dz KI/Z Kl/g
1 .
N KDE D K o) (3)

This equation has the proper causality properties, but is still second order in 2. It

requires consistent, second order boundary conditions at z = 0 and at 2z = oo.

One way to decrement the order of differential equation (3) is to take the
square root of the operators on both sides of equation (3). Unfortunately,
K'D,p ' D, K/% does not have a square root with a simple analytic expression.
An alternative approach is to consider arbitrary functions 7" and G of K and p and
search for an approximation of the form FD, GFD,G. The approximation should
equal the sum of K!?D,p 1D, K% and an unknown multiplicative operator. The
error involved in such an approximation will affect amplitudes only, the distortion
becoming important when the 2z derivative of either K, p, or V becomes large.
Solving for the unknown functions F' and (, the only causal operator that will do
the job is Vi“2D, VD, V%, The error-inducing multiplicative operator that will be

neglected, temporarily denoted by C, is given by the expression
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C = KJ/ZD;I(_;_DZ(KI/Z)) _ VUeDz(VDz(VI/Z))
where the parentheses are meant to suggest the range of action of the
derivatives in the expression. Replacing the operator on the left side of equation
(8) with its causal approximation, and then dropping C yields a two-way wave
equation that propagates waves in the positive z-direction only. Since migration
pushes an upgoing wavefield in the positive z-direction, the use of causal z-
derivatives is a step towards the formulation of a one-way wave equation. The

two-way wave equation now under consideration is

e p

KI /2

[VUZDz vise = KI/ZDf-;—— D, K172

The conversion of this causal two-way wave equation into a causal ohe-way
wave equation is achieved by taking the square roots of the operators on both
sides of the equality. As is well known, any complex number has two square roots
whose sum is equal to zero. Similarly, there are 2" square roots of an n by n
matrix operator. Fortunately, the physics of wave propagation will restrict the
decision of which square root to use to those in

[ 1272
viep, vt Lo = slkiDf ;—D, K2 & (i0—g)?

K1/2 (4)
up to an ambiguity in sign. Any other square root choice must partition the
wavefield into its z-wavenumber components and propagate some of these
components upwards, some downwards. One-way wave equations propagate all
components either downwards or upwards. The sign ambiguity can be resolved by
choosing the propagation direction. Suppose F and the medium parameters are
such that the derivatives with respect to z can be ignored. When this is done,
the operator on the right of the last equation is the square root of the (iw—¢)?,

that one might expect to equal (iw—¢). Neglecting z derivatives of V and K,

D, P~ +(iw—e)AP. For an upgoing wave the '+' sign must be chosen over the '-'.
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This is evident as long as we agree that the principal square root of a complex

scalar z should be defined so that

Rez>=0 Imz=0 ---> Rez”2>=0 lm21/2=0
imz>0 ~--> Rez”2>0 imz
Rez <O imz=0 «--> Re21/2=0 Imzl/2>=0

imz2<0 «-==> Rez“2<0 lm21/2>0

These rules are enough to guarantee that the square root of (iw—z)? will have a
non-positive real part. Since the differential equation under consideration is to
be integrated in the positive z ~direction when migrating, the negative real part of
the square root of (iw—¢)? is a necessary condition for the stability of the

migration.

Returning to the design of a one-way wave equation for migrating upgoing
waves, a formal differential equation that will do the job is obtained by choosing

the '+' sign in equation (4). The result is

14
V2D, vise K}:/z’ (i”'s)2+Xl/2Df;_D’K1/z} 2]1:’2 ®)

Through a change of state variable it is possible to get a differential equation In

= {(iw—e)—(i w—e)+

normal form that can be approximately solved with the help of the Crank-Nicolson
approximation. The desired form is D, f = Opf and can be obtained in two steps
by grouping V*/2 with P/ K'/? and then pre-multiplying both sides of the equation

by A%, The result is the partial differential equation

/72 [ ]1/ 1/2
D, —I;{% = A”‘Fiw—s) - (iw—e) + [(iw-s)z + K”ZD,H;—D,K’”] e]A"’%{—UTP
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The peculiar term (iw—¢) — (iw—=¢) in the braces on the right side of the
equality is placed there because an accurate solution scheme does not solve the
migration equation directly. Instead, the migration equation is split into two partial
differential equations, a phase shift equation and a focusing equation. The two
pieces are solved for alternately at each z-step. Up to second order terms in Az,
the sampling rate along the z axis, the results of solving the migration split and
unsplit will be the same. For finite Az, however, the split scheme enjoys clear
superiority over the unsplit method of solution. This is because the Crank-
Nicolson approximation for D, is valid only for small z wavenumbers. Examination
of the dispersion relation for the unsplit equation shows that its z wavenumbers
are largest for vertically traveling waves. The Crank-Nicolson approximation
behaves poorly for the wavenumbers we want it to be at its best behavior for.

Splitting remedies this by calling for the alternate solution of the two differential

equations
VI/ZP _ . VI/ZP
s e - (“"_S)A_—Kz/e (6a)
VI/ZP [ ~'| ]1/ VI/ P
Dy =g = M = Giw=s) + ll(m—s)z + K'72Df p—DxK’/gjl A= (8D)

The first equation of this split shifts the wavefield vertically through wAz /2
samples. The analytic solution for the wavefield at depth z given the wavefield
at depth z —Az is VI2P/ K'¥xz,z,w) = exp[(iw—8e)AAz] VI2P/ K&z 2z —Az ,w).
Equation {6b) of the split pair is a focusing equation that governs the diffraction
effects associated with extrapolation of the state variable V2P / K% from a
depth z —Az to a depth 2. The phase shift equation does most of the work when
the dip angle is small. The focusing equation becomes important when the dip

angle is either large or changing as a function of the lateral coordinate z.
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Ma's method

Equation (6b) can be cast into discrete form by applying the Crank-Nicolson
approximation and then expanding the square root as a continued fraction. This
procedure leads to algebraic difficulties for equations of higher order than the
456-degree equation when V is allowed to vary as a function of z. An alternative
method, first suggested by Ma (1982), is to expand the square root in equation
(6b) in its continued fraction before discretizing the 2z axis. This continued
fraction can, of course, be approximated by one of its approximants. The
approximant can then be expanded by the method of partial fractions and the
expansion split into its component pieces. The component pieces can be

alternately solved at each z -step taken during a migration.

With this program in mind, it is appropriate to focus attention on the quantity
in braces in equation (6b). The operator in question

[ 12
— Giw=8) + |(lw—e)? + KU?DE})—D,KWJ %6

will be approximated by an approximant cf its continued fraction expansion. It
will be assumed that (iw-¢) is a constant diagonal matrix so that the
eigenvectors of K!2DHo 1D, K'/? will also be eigenvectors of (iw-—:g). The
operator K'2DHp='D, K'/? is Hermitian when K is real, the usual case in
applications. Hermitian operators are complete, have real eigenvalues, and
eigenvectors of distinct eigenvalues are orthogonal. Finally, independent
eigenvectors that share an eigenvalue can always be built so that they too are
orthogonal. From the discussion of the last chapter, the eigenvalues of the sum
of (iw—g)® with this Hermitian operator will have a negative imaginary part.
Consequently, the square root will have a negative real part and the migration

operator will be stable. The continued fraction for the operator in equation (7)
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I K1/2D£Il_ Dz K1/2

l
2(iw—s)+ - -
The approximants of continued fraction (8) will be needed for the development of

(8)

2(iw—e)+ K“sz-:—)—DzKW
45-degree and higher order migration operators. By generalizing the argument to
be developed here, it can be shown that migration's computational costs
increases at every other increase in the order of the approximant of (8)
employed. Therefore, every other approximant of the operator in continued
fraction (8) will be considered. Denoting the approximants by A, these can be

generated using the recurrence

7 1
Rl = KUZDZH'—DR:KI/‘?
2(iw—e)+ mKl/szH:)—'DzKl/z P (9a)
Rk+1 = [ KI/ZDH_LD KI/Z
2(iw—e)+ ._____[__._KI/ZDHJ__D Koz Tp ¥ (9b)
LT S iw—e)+ Ry p %

where ¢ is chosen to improve the approximation to the dispersion relation and to
introduce dip filtering. The sequence of approximants generated by equations (8)
can be obtained by truncating the continued fraction in (8). Equation (9a) of the
recursion can be used to build a 45-degree equation, while equation (9b) yields
equations of ever increasing order. Each element of the recursion is a fraction
whose denominator can be cleared of fraction bars by using the fundamental
recurrence relation for continued fractions. The fraction, once its denominator
has been cleared, can be expanded by the method of partial fractions. As it
stands, however, the coefficients will be frequency dependent. To get a partial

fraction expansion that is independent of w, let S represent the operator

(i w—s)_zf(”eDf%—DﬁKV% The recursion relations can be rewritten, using S, as

!

2r+ L5 (10a)

2y

Rl = (7:&)_8)3
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!

274 : I 5 (10b)
2/ +(iw—e)" 1R,

Each element of this sequence of approximants is the product of (iew—zs)S with a

Rk+1 = ('LC\)-S)S

rational function of §. The order of the numerator is always one less than that of
the denominator. Barring multiple roots, each /K, can be expanded as a sum of
fractions of the form

k aj(k)(iw—s)S

b+

each term of which is a 45-degree operator. Plugging the partial fraction

Rk =
i=1

expansion into equation (6b) yields another focusing equation

D,

ViZp Aue[;k] a‘j(k)(i’w—a)SIAuz viEp (11)

K172 ) bj(k)+s J K12

The solution of this differential equation is obtained by splitting it into its
component terms, solving each split equation at every z-step. Once again, this
strategy is accurate to second order terms in Az, the discretization parameter for

the depth axis.

The discretization of the focusing equation

Each equation of the set of differential equations generated by splitting
equation (11) is a 45-degree equation. The discrete analogue of this equation
has yet to be derived. With the assumption of constant density, the operators
that need to be discretized are the spatial derivatives. In particular, discrete
representations of the first partial derivative with respect to z and the second

partial derivative with respect to x will be required.

The discrete representation of the first derivative with respect to z that is
usually employed is the causal Crank-Nicolson approximation. The error
introduced by using this approximation is third order in Az for small wavelengths.

The bandwidth over which the Crank-Nicolson approximation is valid is narrow, but

the cheapest remedy for this is to decrease the magnitude of Az.

Experience shows that a second derivative operator that is valid over as
wide a bandwidth as possible is a important component in building a migration
scheme - more Important than fitting the dispersion relation for upgoing waves to
high order. Borrowing from the section on derivatives and causality, a discrete

second difference operator with a wide bandwidth is found by implementing
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-1
(Az)?
The denominator of the operator on the right of the equality is a bit of a nuisance,

~DED, f(x,2,t) =

T - BT f(x,2,t)

but it is a removable nuisance. Good choices for 8 will be discussed elsewhere.

Once a set of derivative operators has been selected, it is necessary to
introduce them into an equation of the split from Ma's focusing equation. It will
also be convenient to introduce a new state variable, say @, to stand in the place
of the V!p/K!2s. Once again, an S will denote the operator
(Az)RVT(U-BT) 'V/(iw—e)?  Referring back to equation (11), the

representative differential equation takes the form

(g ry—
2 B : N2 (iw—g)S
Az (@(z)—Q(z—-Az)) = A ___bj(")+.5'

where the w and x dependence of @ has been suppressed. At this point @ is a

A Q(z)+Q(z —Az))

discrete function of the three coordinates, 2z, w, and z. The unknown in the
discretized form of equation (11) is the field § at depth z. Bringing the terms
involving @(z) to the left of the equality and terms that are dependent on
@(z —Az) to the right, we obtain

o) i w—2)S

b{¥)+5

This equation cannot be considered easily solvable yet, since it requires the

e (iw—e)S

]
v B et detll 1/2 _
Az bj(")+S A Q(z —42)

_2_ A1/2

Az/e] o(z) = [2—+A”3
lAz

inversion of the matrix bj(")+S. Fortunately, the denominators of the operators on
both sides of the equality can be cleared by premultiplying by b}’”)+SV”3. The

result of this operation is the difference equation
[, ]
ZZ—(bJ-(")+S)V”e—aj(")('iw—S)SA”z Q(z)

[ |
= Zzz—(bJ-(k)JrS)V1/3+a,-(’°)(w—a)SA“2 Q(z —Az)
Unfortunately, this equation is not easily solvable either. The problem this time is

that the operator S = (Az) RVT(J—8T) ' V/ (iw—¢)? still has a matrix inverse in
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it. Once again, the denominator can be cleared of matrices by premultiplication,
this time by (/—-8T)A. Premultiplication of S by this factor yields the simple
operator (iw—zc)2(Az)®TV. Premultiplication of both sides of the difference
equation under consideration yields

Aza}")
2(iw—e)(Az)?

f 1
[b,-(")(f—ﬁTH(iw—s)“Z(AZ)‘zTVE- T11A”2 Q=)

Azaj(")
2(iw—e)(Az)?
where the equation has been scaled to make the quantity in brackets

[ ]
= Ib,.<'=)(1—,sT)+(w—s)‘2(Ax)—2 TVR+ TV]AW Q(z —Az) (12)
dimensionless. The solution of this linear equation is slightly cheaper if yet
another intermediate variable @, equal to A!“?Q, is introduced. Equation (12)

becomes a linear equation in the unknown @, from which @ is easily determined.

If the operators on both sides of the equality were made dimensionless, then
the downward continuation process would be completely insensitive to choices of
measurement units. This is certainly a desirable feature, but in the presence of
z-variable velocity, it can be achieved only at the cost of more arithmetic. In
particular, a dimensionless version of equation (12) can be obtained by

premultiplying both sides of the equality by V72

Reassembling the pieces for a 2 -step

In the preceding sections the one-way wave equation was split into simpler
differential equations. The number of differential equations is determined by the
order of approximation to the dispersion relation of an upgoing wavefield. Denote
the number of equations in the split by K'+1, where X is a positive integer. Given
the wavefield @(z —Az) at depth z —Az, we want to find §(z). This is done by

following the procedure found in table 4.1.
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1. @, = exp [(Gw-e)AAz] Q(z —Az)
2. Qo = A%Q_,

20,(2)Q4(3) 2Qo(n, —1) Qg (n,—2)
8.7 = . =~ T = > 3
| @o(2) | %+ ] @6(3) ] | @olny —1)|*+| Qo(nz—2) |

4. Forj =1to K

poafB) 1Q _
2(iw—¢)(Az)? V] a

[

lb,m(l—ﬁT)+(w—s)‘z VR~
Azaj(K) ]

2(iw—e)(Az)? TV] KA
Qj(1) =7'I,Qj(2) Qj(nz) = 'erj('nz_1)

5. Q(z) = V20

[
Ib,m(.r—ﬁ T)+(iw—e) 2 TVR+

TABLE 4.1. A finite difference z-step schematic. A five step procedure for down-
ward continuing a wavefield through a single z step of size Az. @(z —Az) is the
input wavefield at depth z —Az. Similarly, @(z) is the output wavefield at depth
z. The subscripted §'s are auxiliary vectors used in implementing the finite
difference scheme. When present, the argument of a subscripted @ is an index
of position along the = axis. For instance, §g{n;—1) is the (n,—1)-th component
of the vector §)g.

Step 1 in table 4.1 is a vertical phase shift of the input data. It is the
solution of equation (6a), the result of splitting the full one-way wave equation
into shifting and focusing equations. Step 2 simply scales the wavefield by the
square root of the acoustic slowness. Side boundary coefficients are computed
in the next step. Step 4 calls for the solution of the K equations generated by
applying Ma's method to the focusing equation. Suitable boundary conditions are
applied at both z boundaries. Finally, the result is scaled by the square root of

the acoustic velocity.

Side boundaries

Side boundary conditions have been neglected so far. Ma's method allows

an extension of the boundary conditions used in 45-degree equation codes to
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higher order migration algorithms. Zero-value and zero-slope boundaries are
trivial, so all that will be considered here are absorbing side boundaries that

adapt to the data.

Steps 3 and 4 in table 4.1 carry out different pieces of an adaptive scheme
for absorbing side boundaries. The boundary is included in the discretization
mesh. Denoting the number of points along the r axis by mn_, the boundaries

occur at the first and n_-th point along that axis. Values of the wavefield at the
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FIGURE 4.1. Impuilse response of the 45 migration operator, With ¢ = 0.73 and a
frequency variable g8, the first of Ma's migration operators is applied to a band
limited impulse. The input was generated by convolving a spike with a three-point
Nyquist suppressing filter in both the time and space directions.
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z indices 2, 8, n,—2, and n_—1 are used as inputs to the Burg algorithm. The
reflection coefficients r, and 7, minimize the sum of local forward and backward

prediction errors.

An explanation for the boundary condition coefficients can be found by
considering the boundary at the right hand side of the grid, at  point number n_.

Consider the differential equation

[D,—sin(e) AD, }Q =0
for continuous §. This equation has solutions of the form @ = Q(z sing+1t), the
wavefronts of which move in the direction the positive z direction as { evolves in
the negative temporal direction. Since migration is anti-causal in time, this is the
right type of evolution equation for waves that are incident on the right hand side
boundary. With the Fourier transform convention used in this chapter the
solutions of the side boundary differential equation, when put into the frequency
domain, are proportional to exp[(iw—g)Azsing]. Considering the discrete Q;

again, we have

@i(ny) = exp[(iw—-e)AAzsing] @;(n;—1) (13)

Qi(n;) = r.@;(ny—1) (14)
Thus, the reflection coefficient . can be identified as an estimate of the

complex exponential exp[{iw—g)AAzsind]. In the absence of aliasing in the z
direction, the complex exponential has a positive imaginary part. The positive
imaginary property can be used as a check on the quality of the reflection
coefficient estimate r,.. If Im 7., computed per table 4.1, is positive then
equation (13) is appropriate. Otherwise, the reflection coefficient is judged to be
poor (corresponding to an aliased wave or to a wave propagating in the wrong

direction), and equation (14) is used.

-72 -



Finally, it should be noted that zero-value and zero-slope boundary

conditions can be had by setting r,. equal to 0 and 1, respectively.

A stability analysis for one-way wave equation operators

The one-way wave equation approximations introduced here were based on
a continued fraction. Other approximations could have been used, a Taylor series

for example. Continued fraction approximants to the wave equation have an
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FIGURE 4.2. Impulse response for M a's second operator, With ¢ = 0.6553 and a
frequency variable g8, the second of Ma's migration operators is applied to a band
limited impulse. The operator is of order one higher than that of the 45 equation.
The input here is the same as that for figure 4.1.
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advantage over their competitors, however, in that their stability can be
analyzed. In this section, stability is considered for a wave equation operator

with reflecting side boundaries.

A good starting point for the analysis is a version of equation (6b) which has
been discretized along the z axis. The operator on the right-hand side of this

equation is of the form

|' V]J/e
R, = Al —(iw—s)+l(iw—s)2+ VI(I-BT)7'Y] (A!?
where ¢ is a small positive and real number. The approximants of this operator's

continued fraction expansion can be built up by using the recurrence

= A2 VT(]"!QT)_I |4
2(iw—e)y

VIr(I-gT) 'V Als2
2(iw—e) + V2R, VI7#

where ¢ is a complex constant with positive real and positive imaginary parts.

Rl AI/?

-— 1/2
Reoy = A

The discussion of stability will begin by demonstrating that the Crank-
Nicolson approximation to (6b) is stable when the eigenvalues of R, have non-
positive real parts. The stability proof will finish with a proof that the eigenvalues

of K, do have non-positive real parts.

Equation (6b) is an equation of the form D, Q = K, Q. Use of the Crank-
Nicolson approximation to the 2z derivative, leads to a difference equation that

can be written in the form
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Q(z) = [[ - —RkJ [[ + ——Hk Q(z—Az) (15)

where @(z —Az) is a known quantity and §(z) is an unknown. The matrices in
this equation commute with one another, so they share a common set of
eigenvectors. If one eigenvector is selected and its corresponding eigenvalue for
the matrix K, is denoted by ), the eigenvalue for the matrix on the right-hand
side of the equation (15) is equal to [2-AgAz]/[2+A;A2z]. The modulus of this
quantity is less than unity, so the eigenvectors must decay asymptotically to zero
under the influence of equation (15). Since this result holds for an arbitrary
eigenvector of the matrix on the right-hand side of equation (15), downward

continuation with equation (15) must be an asymptotically stable process.

To start the demonstration that the eigenvalues of K, have non-positive real
parts, consider an arbitrary complex vector £ and the sum xH(RI + R{’)x. The

sum can be expanded as

fVT([ 1 -1 ]
H 172 5T) V([‘ﬁT) TV, 172,
N aay 2iwre)g? | °

since A’ V, and T are Hermitian symmetric matrices. The commutativity of T

and /—87 implies that the sum is also equal to

HA”ZVT([ ﬁT) 1 yALl2, Re[(m, 3 W J
where z# A2VT(1—BT) ' VA'?z is a non-negative definite quadratic form. The
complex number 1/ ((iw—¢)¥) has a positive real part by construction, so the sum
zH (R, + R¥)x is a real number less than or equal to zero. If x is chosen so that

it is an eigenvector of /; with a corresponding eigenvalue Az, then
xH{R{{ + Rl}x = zHpiy 4 zf Rz

= i \Hz + zH ),z = 2z xRe{)\z}

H

Since "z is a positive real number and its product with the real part of Az
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VI(/-gT) 'V
2(iw—e)+ V2R, ViZ

where V'R, V!, (iw—¢), and VI'(J—BT)"'V are normal and commute with one

VI/ERk+1 VI/Z =

another. It follows that these three matrices and V2R, ., V!/? share a common
set of eigenvectors. Choosing one such eigenvector, let A, and A, denote the
corresponding eigenvalues for the matrices V'R, V! and VI(/-8T)7 'V,
respectively. Since VT'(/-B7)7'V is positive definite symmetric, A, is real and
positive. By the inductive hypothesis A; has a non-positive real part. The
corresponding eigenvalue for V2R, V!?is equal to Ag/ (2(iw—¢)+A,), a quantity
with a non-positive real part. By mathematical induction VIR, V!/? is normal and

has eigenvalues that have non-positive real parts for all positive integers k.

Because V'R, V*/% is normal and non-positive-real, F, has eigenvalues with

non-positive real parts. For an arbitrary complex vector z,

.’EH[R{I+RA,}Z = (Al%%z )H VI/ZE}‘HVI/z(AI/ZZ)'f‘(AI/zZ) V”‘?Hk VIZA N/ )
Since V!“?R, V!’?is normal and has non-positive real eigenvalues, its eigenvectors
are orthogonal to one another. By expanding A‘/’z in this orthogonal set of
eigenvectors, one can easily show that the terms in the above sum have non-

positive real parts and that their imaginary parts cancel one another. Thus,
zH{R,f{+Rk}x is non-positive. As before, this is enough to guarantee that the

eigenvalues of X, has a non-positive real part.
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