CHAPTER 3

The Algebra of Continued Fractions

The migration operators built in the next chapter will use a continued fraction
with matrix operators for coefficients. A continued fraction of this type
generates a sequence of rational forms called approximants. Thus, the algebra of
these fractions and their approximants needs to be developed before proceeding
with a discussion of migration operators. This chapter discusses an algorithm. for
generating sequences of approximants of continued fractions. FEnough
terminology is introduced to make the next chapter intelligible. The type
continued fraction that is used in the design of migration operators is one whose
matrix coefficients are complete and commute with one another. An algebra for

studying this type continued fraction is developed in the final two sections.

Continued fractions with matrix coefficients

The continued fractions usually considered by mathematicians have real or
complex coefficients. For instance, such fractions are employed as Padé
approximations to a function. Because of the attention paid them, the algebraic
and analytic properties of continued fractions with scalar coefficients are well
understood. The development of finite difference migration algorithms requires
the extension of these properties to continued fractions with square matrix
coefficients. Some of the simplest algebraic properties of this type continued
fraction are developed in this section. Analytic properties, such as convergence,

will be neglected.

The building blocks for the continued fractions considered in this thesis are

square matrices. There are three sorts of coefficients, so it is appropriate to



consider three collections of N by N matrix coefficients,

oo 1) 1ol

from which a continued fraction F' can be generated. To build F, consistently
place a's to the left of fraction bars, b's to the left of addition signs, and ¢'s to

the right of fraction bars. The result is

F = bg+a, ! 7 c,
b +ap 7 Ca (1)
by +  EE—
g T Q3 by + - - - ¢s
where the - - - indicates that the structure repeats itself indefinitely. A matrix

fraction with an identity matrix numerator is understood to represent the matrix
inverse of its denominator. The existence of the matrix inverses involved will not

be explored in this thesis.

An interpretation of the continued fraction in equation (1) can be made by
considering F to be the limit of the functional composition of an infinite sequence
of linear fractional transformations tp,p =0,1,2,3,---. These non-linear
transformations are defined for w belonging to a subset of the set of N by N

complex matrices by the expressions

to(w) by + w

1l

I
-
a?bp.l_w p

The argument w must be restricted to the class of matrices for which the matrix

ty(w) p = 1,23, -

inverse of bp +w exists. The existence of these inverses, once again, will be
assumed. Linear fractiona! transformations can be combined via the operation of
functional composition. For example, the resultant of operating on £, with {; is a

transformation

tot,(w)) = bg + a, B—ﬁcl
1
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Similarly, the continued fraction F can be considered to be the limit of a sequence
of transformational compositions of linear fractional compositions evaluated at
some value of w. If the limit is independent of this choice of w, then the

continued fraction can be considered well-defined.

F = F(w) = z!ifltotltz c tp(w)
Convergence is often difficult to prove, even in the case where the continued
fraction coefficients are real numbers. However, the one-way wave equation
operator has a continued fraction with periodic, commuting N by N matrix
coefficients, the analysis of which is easier than that of general continued
fractions. In this special case, the convergence of the N eigenmodes can be
considered separately. The result of the analysis is that convergence is attained
for propagating waves, but head wave modes diverge by oscillation. The
convergence proof is tedious and not important enough to be included here, but
the next chapter and the texts listed in the bibliography can be consulted for

this purpose (Wall, 1972, Jones and Thron, 1980).

A continued fraction is a limit of a sequence of fractions. Most terms in the
sequence have denominators with fractions in them. It turns out that there is an
algorithm for computing the terms of the sequence recursively. Just as important
for our purposes, the algorithm churns out the terms with denominators cleared of
fraction bars. Denote the k-th cleared denominator by B,, the corresponding
numerator by A;, and the k-th term of the sequence by B, 14,. The recurrence
relates successive cleared denominators, numerators, and continued fraction

coefficients according to the prescription:

-1
Fk('lU) = totltz oo tk('u)) = [Bk + wak_lBkﬂ] qu + 'wak_lAk_l]
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B ;=0 Be = 1

A1 = CrnO Ay + beaghiA k=123,

Bisy = Cenog'Be g + by By k=1,2,3,..
Now for some nomenclature: A4, is the n-th numerator, B, is the n-th
denominator, the ratio 5,; !4, is the n-th approximant, a, is the n-th left partial
numerator, ¢, is the n-th right partial numerator, and b, is the n-th partial
denominator. The difference from the usual continued fraction theory lies in the

distinction between left and right partial numerators.

The fundamental recurrence for continued fractions

The previous section showed that a continued fraction can be generated by
a sequence of rational transformations Ly, where p is a non-negative integer and
the transformations are of the form £o(w) = botw, £, (w) = a,(b, +'w)”1cp. Also,
a recurrence relation was given for the functional compositions tgf,£5 - + - £ (w).

In this section an inductive proof for this recurrence relation is presented.

The first term of the recurrence is Fig(w). The partial left numerator a _;, the
first two numerators, A_; and A, and the first two denominators, 5_; and B,

were chosen so that

Folw) = {Bg + wao'lB_l]_l {Ao + 'wao”lA_l} = {bg + w]}

The induction proceeds by assuming a structure for the k-th term in the
sequence defining F'. From this inductive hypothesis, it is shown that the k£ +1-st
term has the same structure. By the principle of mathematical induction, the

structure will hold for all k. The inductive hypothesis is that F} takes the form

-1
Fk('IU) = [Bk + wak'lBk_l] [Alc + 'U)(Lk_lAk_l
for an arbitrary N by N matrix input w. |dentifying the various terms in the

rational form yields a recurrence relation for the 4,'s and F,'s. The next fraction,
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Fi o1(w), is defined by

I
Fen(w) = Fetp(w) = Felag,, bers + W Cx+1)
+

With a little algebra, paying close attention to the lack of commutativity among

the various matrices, this expression can be simplified to look like
-1
Fin(w) = I_(CkHak—lBk—l+blc+1ak_+llBIc)+wak~+llBkJ

[(Ck+1alc~1Ak~l +bk+1alc_+11Ak)+waIc—+11Ak}

-1
Fea(w) = By, + wak:-llBk] [Ak+1 + wak?lek]

Equating coefficients yields a recurrence for both the A,'s and B, 's involving the
partial numerators and denominators:

— -1 -1
Cr+10k Ap-1 + bpv1Gkr1de
_ -1 -1

Beyy = CearOx By + b1 1B

The necessary initializations for this recurrence need to be found. To get the

starting points, consider the cases in whichk = 0 andk = 1.

tolw) = bg+w = [I+0w]“1 [bc+[w]

ti(w) = (bia;t+wa ) Uba;tbgte,+wa bg)
Equating coefficients again and assuming non-zero a,

A_] Qg AQ = bO

B, =17 By = 17
will provide a suitable recurrence initialization.

For convenience, set ay and
therefore A_; equal to identity operators.

From the fundamental recurrence it can be seen that pre-multiplying b, ,, and
Cr+; by the same non-singular matrix will not change the approximants of the

continued fraction. The same can be said for post-multiplication of ¢;,, and a,

and for post-multiplication of b, ,, and a; ,;.
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Algebras of diagonalizable matrices with a common set of eigenvectors

The analysis of matrices is harder than that of scalars because matrix
multiplication is not necessarily commutative, although some subsets of the set of
all matrices form an algebraic structure in which matrix multiplication is
commutative. One such set is formed by a subset of all matrices that share a
common and complete set of eigenvectors. Elements from such a set will be

useful in the design of downward continuation operators.

Suppose M and N have a common set of eigenvectors. Then ¥ and N can
be expanded in terms of a common non-singular matrix 7 and diagonal matrices of
eigenvalues Ay and Ay, respectively. Define S to be the set of all such matrices
that can be so expanded. The following rules apply:

(1) M + N belongs to S,
(2) ¥ N belongs to 8,
(3) MN = NM,
(4) if z is a complex scalar then 2 ¥/ belongs to §, and
(5) if n is a non-negative integer then /™ belongs to §,
subject to the existence of ¥/ ~! where appropriate. These relations follow from

the following considerations

M+N = TAy Tg' + TAy Tg! = T Ay + Ay) Ty!
MN = TAyTR' TAN T = TUAe AW Tg' = TUAv A) Tg' = N M
2 M = 2z TAyg Tg' = T(zAy) Ty!

MY = (T Ay Tg)™! = T A Ty

As a consequence, Ay + Ay, Ay Ay, 2 Ay, A* are the eigenvalue matrices of
M+ N, M N, z Ay, and M¥, respectively. An algebraist would say that (1) $ with
the operations of matrix addition and scalar multiplication is a linear manifold, (2)

S with the operations of matrix addition, matrix multiplication is a commutative
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ring, (3) there exists a linear ring isomorphism between S and the set of diagonal
matrices with complex coefficients, (4) the set of elements of 8§ that are
invertible form a division ring, and (5) the ring isomorphism on 8 is a division ring
isomorphism on the subset of invertible elements of S it is possible to prove that
if each member of the set N,,Ng ' ,N, commutes with M/ so that we can
diagonalize N, according to the scheme N, =7TA., 77!, and if
J =f(N,,Ng, - '+ ,N) is a rational function of its arguments, then J commutes

with # and f = Tf (A, Ag, - - - AT L

Continued fractions with complete commutative matrix coefficients

The algebraic results from the previous sections can be specialized to build
an algebra for the coefficients and approximants of such continued fractions.
Once again consider the continued fraction F from equation (1) with the matrix
coefficients a;, by, and ¢, (k=1,2,3,...). Assume the matrix coefficients share a
common complete set of eigenvectors. Any function of the matrix coefficients of

F that has a rational or power series expansion will commute with any of a,,
For example, the continued fraction

!

I
b1+a2 Co

bs cg

+a
sba‘l‘

commutes with ¢;. A consequence is that ' can be rewritten

I

F o= bg+t 7 a,c,
bl +a2

Ca
'
bz+as _—_—b3+ . Cg

where the new first left partial numerator is equal to an identity matrix. If all the
left partial numerators are brought to the right side of the fraction bars, then the

resulting continued fraction is
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~—

a,C,

~ [~

b, + QzCo
by + asc
2 by + - - 3C3
in which all the left partial numerators are identity matrices. Thus, it is no longer
necessary to distinguish between right and left partial numerators. In an abuse

of notation it is possible to rewrite /' with simpler partial numerators as

F=b°+

€,

Ca
Cs

The advantage obtained by working on continued fractions within an algebra
of matrices with common eigenvectors is not just one of simplicity. The
advantage lies instead in control over the eigenvalues and eigenvectors of the
continued fraction and its approximants. For instance, 7', the partial numerators,
and the partial denominators share a complete set of eigenvectors. If ﬁkj and Ve
are the eigenvalues of the jth (common) eigenvector of b, and ¢, respectively,

then the jth eigenvalue of F is

I
Aj = foj + 7 Y15

Bij + Y2j
Bz; + ! 73j
’ Baj + !

Suppose, now, that Re[g;] >0 and that v, is real and positive (i=1,2,3,...;

j=1,2,..,n). By induction, it is easy to show that Re[);] non-negative and that
the real parts of the j-th eigenvalues of each of the approximants of F are
positive. The stability of the finite difference approximation to the one-way
wave equation will depend on positive~real properties, so the exercise is not a
trivial one. The construction of the finite difference operator is taken up in the

next chapter.
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