CHAPTER 2

NMO-Based Methods for Obtaining Images from Profiles

Sparse sampling of the data along the geophone axis and cable truncations
introduce spurious semicircles into the output of the Cartesian method. These
artifacts disappear when the downward continuation is done in an NMO-based
coordinate system. Clean images are produced by the two NMO-related
algorithms discussed in this chapter even when both the shot and the geophone
axes are sparsely sampled. The first algorithm consists simply of the NMO and
time-to-depth correction of profiles. The second is a pre-stack migration of

profiles in radial/NMO coordinates.

The first section of this chapter discusses the NMO and time-to-depth
correction algorithm and its application to the profiles of a marine seismic line.
The two succeeding sections derive a 15-degree one-way wave equation for
downward continuing upgoing waves in radial/NMO coordinates. This derivation is
followed by a brief discussion of the form taken by imaging condition in
radial/NMO coordinates. The first part of the final section is an exposition of the
pre-processing and radial/NMO migration of a single profile. The final section of
the chapter concludes with a description of the results of applying the method to

a suite of profiles from a seismic line.

Normal moveout and time-to~depth correction

In regions where dips and lateral velocity variations are not too strong,
migration is unnecessary. This motivates an easy way for obtaining images of the
subsurface from profiles. The method involves stretching the traces according to

NMO and time-to-depth correction formulae.
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The near offsets from 86 consecutive profiles

The direct wave is the event between 0.2 and 0.4

SEITSE VAN AR WA Iy

Near offset section,

1 2 3
Time (seconds)

from a line recorded in the Gulf of Alaska by the USGS. The shots are 50 meters
seconds. The sea floor is event §, stretching from 2.6 seconds on the left to 2.2

seconds on the right. Diffractions on the sea floor are visible near traces 20 and
65. Several primary reflections are at slightly larger travel times. Those marked

P1, P2, and P3 will be discussed later. Event M is a sea-floor multiple reflec-

apart from one another.
tion.

FIGURE 2.1.



Given an rms velogity function for a trace with offset h and midpoint y, the

NMO correction formula maps one-way travel time g into £. The correction

4p?

t? = 4t + ————
‘ Urzms(y’to)

is the same as that used to correct common midpoint gathers for the effects of

offset. This formula makes sense as long as dips and lateral velocity variations

are moderate.

If a depth section is desired, then the NMO coordinate {; must be converted
to depth 2. The process that accomplishes this change of coordinates is time-
to-depth conversion. In the absence of dip, the depth of an event and its one-

way vertical travel time are related by

y 1
to = {dz’—v(y’z,)
where v is the acoustic velocity function.

The NMO method of imaging was performed on 86 successive profiles from a
marine seismic line from the Gulf of Alaska. The lateral velocity gradients were
slight everywhere except at the sea floor. Therefore, the same velocity function
was used to correct all the traces of a given profile. However, these rms
velocity functions were allowed to vary from profile to profile. In total, 86
profiles, 48 traces per profile, 1250 samples per trace, were NMO corrected. The
data was sampled at a 50 meter rate along the shot axis, a 50 meter rate along
the geophone axis, and at a 4 millisecond rate along the time axis. The near
offset distance was 238 meters on input, but the leading trace on output was
some 643 meters to the far side of the shot from the hydrophones. The depth
axis on output is sampled at a 10.57 meter rate. A near trace section and a plot
of four seconds from the first seven shot profiles appear in figures 2.1 and 2.2,

respectively.
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The near offset section should be carefully examined, because an
understanding of its geometry will be useful in interpreting the shot profiles. It
should be noted that no effort was made to remove either the bubble waveform or
multiple reflections from the data. All attempts at bubble deconvolution
decreased the lateral coherence drastically. On the other hand, muitiples were
left in the data to study their behavior under processes that form images from
common shot profiles. Since the water is roughly 1.85 kilometers deep, the first
few primary reflections and their sea-floor multiples are well separated from one
another. If the events on the section are identified by their time of occurrence
on trace number 86, the left-most trace, then a sea-floor primary can be
identified at 2.2 seconds. The sea-floor reflection has several diffraction
hyperbolas superimposed on it, reflecting a rough topography. The sea-floor
reflection occurs at earlier times as the shot point index increases, corresponding
to a sea-floor dip of about five degrees. Additional primary reflections occur at
2.6 and 3.4 seconds, with primaries having lateral amplitude variations, perhaps
caused by the focusing and defocusing of the irregular sea-floor. These primaries
also have an apparent dip that seems to be largely due the lateral variation in the
size of the water column. Sea-floor multiples occur at 4.4 and 4.8 seconds on

trace 86.

The water bottom reflection at 2.6 seconds and primary reflections at 3.0
and 3.5 seconds are easily identifiable on the shot profiles. The multiple is
absent on the profiles of figure 2.1, because it is expected to occur at times
later than 6.2 seconds in this part of the line. The multiple can, however, be
observed to creep into the bottom of profiles later in the line when these are
displayed sequentially. Such plots aré easily made in movie form %or display on a

storage screen.
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FIGURE 2.3, RM S velocity function for the Gulf of Alaska line, The rms velocity
functions for the NMO correction of the data plotted in figure 2.2 were a function
of shot position, but were kept independent of g within each profile. The func-
tions are almost linearly dependent on travel time below the seafloor reflection
intercept.

Fortunately, the seismic line was accompanied by the results of rms
velocity measurements at several of its midpoints. From these measurements,
rms velocity functions were estimated for use on common shot profiles. The
function for the first shot profile of the line appears in figure 2.3. By performing
normal moveout and time-to-depth conversion, an estimate of the positions of the
reflectors beneath the shot profiles can be made. The result for the first seven
profiles is plotted in figure 2.4. The output has been effectively subsampled by

deleting every other trace to make it look more like figure 2.16, a plot of the same
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shot profiles after wave equation migration (really figure 2.4 was generated by
passing the data through every step of the migration procedure used to generate
figure 2.16 except those steps involving data extrapolations at near and far
offsets and the step involving an application of the 15-degree wave equation
operator), The padding in figure 2.4 was put there for the same reason, to make

the job of comparing migrated and unmigrated NMO corrected shot profiles easier.

The radial /NM O coordinate system for imaging profiles

Simple normal moveout and time-to-depth corrections do not correctly
position events in space when there are dipping reflectors. A migration of the
profiles is necessary to correctly position such interfaces. If insensitivity to the
geophone sampling rate is desired, then a migration method that works in a

coordinate system defined by the normal moveout correction is appropriate.

The data most likely to be aliased on a shot profile recorded in an area with
minor deviations from layer cake geology is that lying at large offsets. Normal
moveout alleviates the problem for primary reflections from planar interfaces with
near-zero dip. For instance, a cursory comparison of figures 2.2 and 2.4, shows
that the range of stepouts has been markedly reduced by applying a normal
moveout correction. If a normal moveout coordinate system is used for migrating
seismic data recorded over a favorable geology, then migration amounts to a
time-to-depth conversion plus a small amount of lateral and vertical shifting. The
job is so simple that a low order (15-degree) differential equation with a large
step size can be used. Utilization of a 15-degree equation with a large step size

makes for a pre~stack migration at minimal cost.

Further reductions in the effort involved in pre-stack migration are obtained
with cylindrical, instead of the usual Cartesian, coordinate system, The angular

coordinate of such a system is related to the ray parameter of a plane acoustic
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wave. The ray parameter of a ray propagating in a layer cake-like earth is an
invariant function of the depth. Thus, if radial coordinates are used for migrating
events caused by reflectors with near-zero dips, then a migration will involve
some vertical shifts and still smaller 'lateral" shifts of energy from one ray

coordinate value to neighboring ray parameters.

The simultaneous use of a radial and NMO coordinates for the migration of
data recorded over a regions with small dips should involve a minimum of effort.
Moreover, the use of radial coordinates eases the boundary condition problem at
the far offsets, since a boundary condition that forces the wavefield to equal
zero at the ray parameter corresponding to horizontal propagation is a natural one.
The other side boundary still presents a problem. In this study, a zero-slope
boundary condition was enforced at the small-r side of the data while it was

downward continued.

Radial/NMO coordinates are ideal for waves traveling along the rays
sketched in figure 2.5. The new coordinate system requires the specification of
a constant velocity parameter vy. The transformation from the offset-time-depth

coordinate system to radial/NMO coordinates is a set of three equations

r(g,t,z) = - —

vé t
172
d(g,t,z) = %—{z + [ugtz—gz] ’} (1)
z(g,t,2) = =z

where v, is a constant acoustic velocity and the origin is at the shotpoint. The
inverse transformation, form radial/NMO coordinates to recording coordinates, is
easier to visualize. It is also more important, since the computer implementation
of the algorithm for migrating NMO corrected profiles in radial/NMO coordinates
uses the inverse transformation to map the data into radial/NMO space. Again,

there are three equations:
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FIGURE 2.5, Radial/NMO coordinates. Recording coordinates are g, the distance
from shot to phone, z, the depth of the downward continued phones z, and ¢, the
travel time from shot to reflector to geophone. Radial/NMO coordinates are r, the
sine of the angle of propagation, z, and d, the reflector depth.

(2d —2°) r vy

H

g(r,d,z’)

12
[1 —'rz'ug]
2d — 2z’
t(r,d,z") = 'V
'uo[1 —'rz'ug) (2)
z(r,d,z?) = 2’

When 2z’ = 2 = 0, implementation involves finding, for each pair (rg,d) in the
output space, the value of the input field at the corresponding pair (gg,tg), given
by the inverse transformation of equation (2). In general (g ,£) will not be a grid
point of the input, so some interpolation will be necessary. All the examples of

this section used a four point linear interpolation scheme to interpolate along a
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line in (g,t)-space. The line chosen is the tangent to the zero-dip reflector travel
time curve through the point (g4,f5). The slope of such a line is easily found to

be equal to g/ (Ugt). Not coincidentally, this slope is identical to r.

The radial/NM O 15-degree wave equation

A shot profile in any coordinate system can be treated as a boundary
condition for a one-way wave equation. If that one-way wave equation is the
15-degree equation, then it can be written in radial/NMO coordinates by using the

chain rule. From equations (2), the substitutions

12
[1 - rzfug]

8 _ 1 L7 8 1 TUg 9

= z T 2 1 2 a7 ad
dg vg (2d-27) or 2 [1__7,21}5]/ ad

1/2
— e, B

PR Udast) o % 1 0 (3)
ot 2d -z’ or 2 [1 —rzug]”g 8d
e _ 198 [0
oz 2 9d oz~

must be made to express the one-way wave equation for upgoing waves in
radial/NMO coordinates. For a constant acoustic velocity vy the one-way wave
equation for an upwards propagating wavefield P in a single shot experiment

takes the form

op _ (1 8 _ 8*1]”
8z vE a8t? 992 |

(4)
The direction of propagation is controlled by the way the square root is defined,
and in this work the square root of an operator is defined by its continued
fraction. Thus, if A and H are commutative operators, /7 is positive-definite, and
A is positive (negative) semi-definite, then (4 + 5)!’? is an operator that is
positive (negative) semi-definite. When 4 is strictly imaginary, the square root is

non-negative imaginary. Thus, the square root in equation (4) is causal in the £-
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direction when the time derivative is a causal derivative, and is anti-causal when

the time derivative employed is an anti-causal derivative.

Substituting equations (3) into equation (4) yields a partial differential
equation for propagating upgoing waves in radial/NMO coordinates. If first
derivatives of the wavefield are ignored, and the prime on 2z’ is dropped, then
differential equation (4) looks like
]1/2

[ 2
1 62 [1 “?‘z'l)g] 62 I

4 3d?  wE(2d - 2)? 6?"2J

0 1 9
[6z+25?

in the new coordinate system. Dropping the first derivatives of the wavefield
leaves the phase behavior of the 15-degree approximant intact, but alters the
amplitude behavior. Since we are much more interested in timing shifts for
velocity analysis and for good stacks, dropping these first derivatives leaves the
15-degree equation unaltered for all practical purposes. The square root can, as
usual, be expanded as a continued fraction. Ignoring commutation relations, the

expansion canh be defined with the differential equation and recurrence relations

0 1 9
—_—t =
6z 2 0od P An P
L
0 2 ad
(1-r2ug)* 52
1 9 vg(2d—z)? 9r®
Aery = 2 ad 1 9

— =
2 9d A
where the use of A, leads to a 16-degree equation. If 4, is used and

denominators are cleared, the result is the differential equation

R
52 . [1 - 'rzvg] 52
8ddz vg(2d — z)? or?

that looks like the 15-degree equation geophysicists have become used to. The

P

differences are that the coordinate system has been changed and the coefficient
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in front of the second derivative with respect to the lateral "spatial’ coordinate

is no longer a constant,

The direction of propagation of equation (4) is defined, but its causality is
not. The equation can be used to push an upgoing wavefield either downwards or
upwards. Migration pushes the upgoing wavefield downwards, and does this by

specifying the causality of the z and d derivatives that it uses. A causal z

RV
o -1 -0.5 0 0.5 |
) i
o8 ! I
(’3; O i ‘
s I |

FIGURE 2.6. Point scatterer impulse response.The seismogram caused by a point
scatterer transforms to this irregular shape in the (r,d) plane. The scatterer is
located 1010 m below the surface and 5§00 m to the geophone side of the shot.
The r axis is sampled at .011 ms/m and r = O is a vertical line through the
center of the plot.

-24 -



derivative and an anti-causal d derivative are employed, denoted by D, and
(-—Dd)H, respectively. Migration also makes use of both causal and anti-causal
lateral derivatives, D, and (—D,)7, respectively. With these choices, the 15-

degree wave equation for migrating upgoing waves is

(-D)D, P (5)
Since the right hand side of equation (5) has functions that are d-dependent, a
Fourier transform over d does not lead to a simple frequency domain formulation
of the wave equation. Hence, equation (8) was discretized and implemented in
the d (time-like)-domain. The discrete version of equation (85) is applied
recursively in the anti-causal d and the causal 2 directions, much as the old 15-
or 45-degree time domain operators in (z,z,t)-space worked in the anti-causal ¢
and causal z directions (the migration operator for upcoming waves pushes the
field from 2z = 0 to positions where z > 0 and, at each z-step, from retarded

travettime £t > O0tof = 0).

The imaging condition in radial /NM O coordinates

An image can be obtained from a downward continued shot profile by cross-
correlating the downgoing wave caused by the shot with the upgoing wave
recorded at the geophones. The image then appears at the zero-time lag of this
cross-correlation. This imaging condition takes a peculiarly simple form in the

radial /NMO coordinate system.

The downgoing wave, or direct wave, on a shot profile can be modeled as an
amplitude modulated delta function. In (g,z,f)-space, this delta function takes
the form

172

6(t — [g2 + 22] / Ug)

t!/e

D(g,z,t) =
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FIGURE 2.7. Downward continuation of a point response. When the geophones
are 1000 m below the surface, the point scatterer seismogram has a sharp peak
at the image point with two tails attached to it.

The deita function is equal to zero at all points where its argument is non-zero.
Since D is to be cross-correlated with another wave, the set where it is hon-zero
is of particular interest. Using equations (2), the values where the delta function
is non-zero are given by

2d ~z f(zd-z)zrzug 12

[1 —r%E]W ) l 1-r%u§

where a positive square root is understood. Squaring both sides of this equation
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and eliminating r leads to a timing condition for image formation: z = d.
Combining the condition z = d, equation (2) for t(r,d,z*), and the expression for
D(g,z,t), yields a functional form for the downgoing, direct wave in (r,z,d)-
space

J1sa

{u§(1 - 'rz’U(?)J

D(r,z,d) = 5(d - z) (6)

If amplitude effects are ignored, then the imaging condition for downward

continued common shot profiles in (r,z,d)-spaceis d = 2.

An image in (r,z")-space is useless because geology occurs in the (g,z)-
plane. The transformation to (g,z)-space can be had by plugging the imaging
condition d = z’ into equations (2). Doing this and solving for r and 2z’ yields the
transformation equations

'vo[zz + 92] e
2’ = z
for images made from common shot profiles. The image that is destined to appear

at output coordinates (g,z) can be obtained from the image point given by

equations (7) in radial/NMO coordinates.

The range g is allowed to sweep over is still arbitrary. An option that works
well is to let h range over a segment about as long as the input data. The near
offset distance should be at most equal to half the near offset distance before
migration, less some length for padding. The output should probably include some

traces with negative offsets.

Point scatterers in radial /NM O coordinates

In the previous section, an analytic expression for the downgoing, direct

wave caused by the shot was derived. Analytic expressions for the upgoing
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wave caused by a point scatterer at depth will be presented in this section.

Once again, the recorded wave can be modeled as an amplitude modulated
delta function. This delta function is non-zero when ¢ is equal to the sum of the
travel time from the shot to the scatterer with the travel time from the scatterer
to the geophone. Placing the shot at the origin, the scatterer at position (gg,24),

and geophones at positions (g,z ), the upgoing wave takes the form

7 12
: 7 0t — g — L [(9 —go)? + (z—2¢)% )
I Ug l .I

U(g,Z,t) = I
l(g —go)® + (2 —zo)zj

where £, is the travel time from the shot to the scatterer. Since {; is
independent of g, 2, and ¢, it is a true constant. The amplitude of [/ is also a
function of shot position, but this dependence has been neglected to simplify the

analysis.

The wave U(g,z,t) is equal to zero at most points in (g,2,f)-space. The
only places where UU does not vanish are those where the argument to the deita
function is equal to zero. In (r,z,d)-space, this happens when the following
equality holds:

172

2
(2d—2) 1 |l (2d=2)rv,
7zt to = v 77~ go| +(z2-20)?
v0[1 -—rzu(?] 0 [1 ——'rz'ug]

When d=>2z and |rvg| <1, both sides of the equality are non-negative, so the
expression is well defined. Squaring both sides of this equation and then

manipulating the result to isolate the term (2d —z), yields a quadratic equation

2(vtg—-rv )
SN0 (2d-2) + [whtE —(2—20)° — g&] = O
[1 —7'21;02]

with two real roots. One of these two roots seems not to have any physical

(2d -z)? -

significance. Keeping only the root that has a physical meaning and solving for d,

yields an equation for the points in (r,z,d )~space where [J is non-zero
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vglg—TUgy 1 ’('ut—'r'ug)z [ ]1/2
2 00 050 c*0 CJ 0 2 2 2,2
-+ 4+ — + +(Z—Z ) —u ot

> [1 Tzvg]z/z > { 172y 2 lgo 0 ola]

d =

—T " Ug

The amplitude distribution of [ in NMO/radial coordinates can be obtained by
simple change of variables. The upgoing wave caused by a point scatterer in
(r,z,d)-space is found to be equal to

,Ué/z

U(T’z;d) = |_ ]2 1/4
(2d —-z)rv
132 —go| +(z-20) (8)
[1 —rzv§]
z Volo—TVoGo 1 |(uoto—ruege)® | '
d - % _ _ 2 —2 )2y Bt R
é > 2[1 _Tzvg]l/z > [ 1-—7"2/!}02 + lgo +(Z Zg) U 0]

Among the special cases of equation (8) that can be examined, the most
interesting is that obtained by setting z, the depth of the downward continued
geophones, equal to z; the depth of the scatterer. When this is done, the
amplitude of U(r,z,d) is singular at rugty =go. In (g,2,f)- space, this
singularity condition is equivalent to g =g, The field obeys one of two

equations defined on the two sides of the singularity. For rvty<g,

Urzod) = | - 1% sig = Zo._ (=muo)(gotvoty) !
R (=2 R B e
[1 —rz'ug]

the wave travels towards negative r. In (g,2,f) space, this is a wave traveling

horizontally towards negative g in the region g <g,. Similarly, for rvty>go,

[ ]1/2 [ 1+ —getunt ]
Ulr,zqd) = a Z'U)O sld — 220 _ (1+7v)( ;90 111/02 o)
2@ 720)7V _ 2
I . 193 —gol 2[1 T ”0]
[1 - r%g]

representing a wave traveling towards positive g in the region g >g.
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Left: FIGURE 2.8. Input profile, Raw data for the radial/NMO method of profile
migration. The near offset, 238 meters distant from the shot is at the right edge.
Right: FIGURE 2.9. NM O correction. The input has been NMO corrected with the
rms velocity of figure 2.3. Since the sea floor reflector has a dip of about six
degrees, the event at 1.3 seconds has not been flattened.
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The transformation and migration of profiles

The pre- and post-processing for profile migration is complex, involving many
steps. Plots of some steps are invaluable in judging the propriety of the many

approximations used by a radial/NMO migration algorithm.

The new coordinate system is defined with a constant transformation
velocity, so the first problem that arises is that of coping with vertically varying
acoustic velocity. One solution is to convert the input data so that it looks like a
profile recorded over a constant velocity earth. This can be achieved by applying
an NMO correction with a time varying rms velocity function, converting from time
to depth, and then applying an inverse NMO correction with a constant
transformation velocity v, Figures 2.8 through 2.11 illustrate this step, as

applied to the left-most profile of figure 2.2.

After conversion into a constant velocity profile, some pre-processing is still
needed to lessen the effect of near and far offset data truncations. The data is
therefore padded and the padding filled with an extension of the original data. In
figure 2.12 the 48 traces of the input have been padded with six traces of zeros
on the left and six traces of zeros on the right. The bottom was padded with a
mere four samples. The padding was filled in by (1) applying a spherical
divergence conversion to make the data more stationary, (2) applying a normal
moveout correction to reduce the range of stepouts and change most events so
that they are linear and horizontal, (3) transposing the NMO corrected data, (4)
convolving the transpose with a time-domain recursive dip filter set to reject high
dips, (5) transposing the filtrate, (6) restoring the normal moveout, (7) restoring

spherical divergence, and (8) restoring the input data.

After extrapolation, the profile was gained to make to appear as if it were

recorded in a two dimensional world, and mapped into the radial/NMO coordinate
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Left: FIGURE 2,10, Time-to-depth correction. The result of applying a time-to-
depth conversion routine to figure 2.9. Right: FIGURE 2,11. Inverse NMO
correction, The result of applying a constant velocity inverse NMO correction with
a transformation velocity of 1480 m/s.

system. The transformation velocity was set equal to the minimum of the interval
velocity function. The interval velocity function was constructed from the rms
velocity used for normal moveout correction. If a larger transformation velocity is

used, then there is a chance that some event will map into regions where rug
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exceeds unity. Since waves with ray parameters this large do not propagate, the
choice of v, as the smallest interval velocity is the cheapest transformation

velocity that does not artificially create evanescent energy.

To build a mapping into the radial/NMO coordinate system, not only does a
transformation velocity need to be specified, but some discretization parameters
need to be chosen as well. The r axis was discretized with as many sample
points between r =0 and r = 1/ v inclusive as points in the padded input.
Similarly, the d-axis was discretized so that there were as many sample points
between d = 0 and the maximum depth expected inclusive as time samples in the
input, scaled by the quotient of the maximum frequency in the signal by the

Nyquist frequency.

The data as a function of r and d is plotted in figure 2.13. The result
consists of a series of roughly horizontal bands. In general, the derivative with
respect to r within such a band will be small. Thus, the effect of undersampling
the geophone axis has been effectively minimized by the transformation into NMO
coordinates. This was expected, because the dips present on the near offset
section were all less than ten degrees. The shortness of the bands is a bit more
troublesome. The data at high d has almost certainly been undersampied. The
only correction for this is to sample the r-axis at a higher rate and bear the
increased cost of migration. The higher r values seem not to be present in the
data, so one option that would decrease costs is to insist that the wave contain
no events between some preset value ry and 1. Unfortunately, it is hard to tell if
a profile other than that displayed might not contain an event with a large ray
parameter or if any of the profiles of the line might not, after migration, contain

such an event.
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Left: FIGURE 2.12, Padding and extrapolation. The data has been padded and
extrapolated to suppress the truncation effects at far and near offsets. The ex-
trapolation process consists of NMO correction, low-pass dip filtering, and res-
toration of the recorded data between the padding at the sides. Extrapolation is
done to suppress smiles created while downward continuing. Right: FIGURE 2.13.
Radial /NM O coordinate mapping. After padding, the data is mapped from (g ,t)-
coordinates into the coordinate system with » and d-axes. The data is sampled
along the r axis at a rate of 11.26 milliseconds per kilometer. The sampling inter-
val for d is 10.67 meters. The sampling in the r direction is too coarse, since the
grid is vacant at regions where rv is near unity.
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Finally, the profile was migrated and imaged. Plots of the image plane in
(r,d,z)-space and the image in (g,z)-space appear in figures 2.14 and 2.15.
Since Az was chosen to be equal to 10 times Ad, the image plane's gradient was
equal to 10 and lay in the plane r = 0. Only the volume beneath the image plane
is involved in the migration process because of the causality of the derivatives
used in migration. The computational cost associated with downward continuing
geophones is proportional to the volume of the active set beneath the image
plane. it follows that choices of Az smaller than the one used, even though they
would have generated a cleaner image, involve much higher cost. The price paid
for speed is the clutter at the image of the sea floor. As little oil can be
expected to be trapped at the sea floor and since the images of the other events

seem clean, perhaps the large z step size is justified.

As promised, the profiles of the USGS Gulf of Alaska line were migrated.
Migrating a whole line of profiles is much more interesting than migrating an
isolated profile because lateral velocity anomalies should be visible. If the data
from the migrated profiles are reorganized into data sets sharing a common
receiver, a so-called geophone profile, then pictures of the subsurface obtained
with different illumination angles are obtained. If the shot profile inages are made
with a correct velocity estimate, then the depth estimates of the various
reflectors will be independent of illumination. On the other hand, if the shot profile
images are made with a slightly incorrect velocity estimate, then the depth
estimates will be slightly illumination dependent. For instance, if the velocity is a
little too high, then the depth estimates will be larger for big offsets than for
small offsets. If these travel time anomalies can be estimated reliably, then they

can be converted into migration velocity field perturbations.
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that in figure 2.13, 11.26 nmilliseconds per kilometer. The data has been padded
on the right to make room for data moving into regions of the plane where 7 is

along the z-axis is 10.57 meters. The sampling along the r-axis is the same as
small. The origin of the coordinate system is marked in the plot.

FIGURE 2.14. A migrated image plane in radial coordinates. After migration the
image plane is in the coordinate system with r and z-axes. The sampling interval
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The Gulf of Alaska line was migrated with time shifted versions of the
velocity function plotted in figure 2.3. The time shift was obtained by picking the
zero offset travel time of the sea floor reflection on each of the gathers of the
line. The first seven profiles are again plotted, this time in figure 2.16. The
migrated output and the NMO corrected input to the migration program (see figure
2.4) are different. Most of the events on the image in figure 2.16 have shifted
upwards and towards zero offset. The only exception is an event at a depth of
about 3000 meters that has near-zero dip. The padding in the migrated output is
filed with migration smiles that should be considered as processing artifacts. All
events wobble as a function of shot position. This wobble is probably caused by
lateral velocity perturbation, so in principle a measurement of the wobble can be

transiated into an estimate of the perturbation.

A comparison of the two shot profile migration procedures

The Cartesian and NMO-coordinate methods have been applied to the same
shot profile, but the two images are different. The main reason for the difference
is that the migration velocity used by the Cartesian method accounted for the dip
in the sea floor while the velocity used by the NMO-coordinate method was
laterally invariant. Since the velocity used by the Cartesian method was closer to
that of the earth, the events on the Cartesian method's image are more

accurately positioned than corresponding events on the NMO-coordinate image.

Event NMO Offset | NMO Depth | Cartesian Offset | Cartesian Depth
Sea floor | 100 2100 150 2000
P1 350 2600 250 2450
p2 250 2925 2560 2800
P3 400 3350 300 3200

TABLE 2.,1. Primary events on the migration images, Events identified in the mi-
gration outputs plotted in figure 2.17. All units are in meters.
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FIGURE 2.15. The image plane in the output coordinate system. The result of ap-~

plying an r-+»g mapping to the data set in figure 2.14. The discretization and

plotting parameters are the same as those used in figures 1.2 and 1.3. The data

is sampled along the geophone axis every 50 meters. Here, the shot point lies

643.5 meters to the left of the rightmost trace.
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An important difference between the two pictures is that events on the
Cartesian image (figure 1.3) are consistently shallower than corresponding
events on the NMO-coordinate image (figure 2.15). To make this difference
easier to see, the two sets of data are windowed, non-linearly gained, and
plotted adjacent to one another in figure 2.17. The non-linear gain applied tends
to suppress small events. Four corresponding events in each half of figure 2.17
will be considered. Approximate offsets and depths for the four events on the
two outputs are listed in table 2.1. The discrepancies in the table are the resuit
of a low-velocity wedge, just above the sea floor, at a depth of 2000 meters.
The Cartesian method honored this velocity anomaly, but the NMO-coordinate
method ignored it. The main effect of the wedge is a vertical shift of events on
the Cartesian image about those in the NMO-coordinate image. Table 2.1 also
reveals a small lateral shift from the positions of corresponding events in the

NMO-coordinate image.

An estimate of the size of the depth discrepancy caused by the low velocity
wedge is easily obtained. The thicknesses of the wedge at near and far offsets
are 25 and 277 meters, respectively. With a replacement velocity of 2000
meters per second, the wedge introduces a time delay that can be approximated
by

1 B 1 \
1480 m/s 2000 m /s’

If a vertical ray path at the near offset and a 30 degree ray path at the far

AM = (26 m+277 m/ cos30°)( = 0.088 s

offset are assumed. Ray tracing suggests that these numbers are reasonable.
The time discrepancy occurs in a region with a velocity of about 2000 meters per
second, so a 58 millisecond delay corresponds to a depth error of about 120
meters. Since the Cartesian method uses a slower velocity than the NMO-

coordinate method, events on the Cartesian output will occur about 120 meters
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FIGURE 2.16. Profiles migrated with the radial /NMO method. The first seven
profiles of the USGS Gulf of Alaska line. The profile have been migrated in
radial/NMO coordinates. The data for figure 2.15 appears as traces indexed O
through 47.
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above corresponding events on the NMO-coordinate image. A quick glance at

table 2.1 shows that this is indeed the case.

There are also some differences in the lateral placement of events on the
two images. The lateral displacements are more difficult to measure than the
vertical discrepancies because their determination relies on the identification
locations with anomalous reflection coefficient. Though the scatter is large, the
Cartesian migration tends to move events about 100 meters closer to zero offset
than the NMO-coordinate method does. This effect, too, is a result of the

laterally varying velocity model used by the Cartesian method.

Finally, an important difference between Cartesian and NMO-coordinate
images is the sensitivity of the former to sampling along the geophone axis.
Because the Cartesian algorithm requires derivatives with respect to g, its
performance degrades when high lateral wavenumbers are present in its input.
For instance, the sea floor reflector at 2000 meters depth is split into a
sequence of laterally displaced images in figure 1.3. In comparison, the NMO-
coordinate migration produced an image of the sea floor that has a better defined

location and dip.

Radial /NM O coordinates for a vertically varying medium

The time-to-depth correction that made figure 2.14 possible is a coarse
approximation. Over dipping beds, this correction is not well-defined and lead to
misplacement of events in imaged common shot profiles. it would be preferable to

develop and use a new coordinate system. Such a system is

1/2

D z'
g = 2{ rv(s)ds - _{| rv(s)ds
[

[‘l ~'rzv2(s)j 1 ——7'2112(5)]
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FIGURE 2,17, Cartesian and NM O-coordinate gained outputs., The horizontal axis

offset in meters. Both plots are obtained by taking the signed square of migration

outputs.
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- 9

{u(s){1 -7 'uz(s)J o {'u(s)lp ——7‘21)2(5)]'1/3 (9)

2z = gz’
To get the wave equation in this new coordinate system, the Jacobian of this
transformation and its inverse wiil be needed. Define the Jacobian, J, through the

relationship

(a1 fa]
oz’ 662
a - —_—
or =7 dg
o 0
ap ot

The nine coefficients of J can be found by partial differentiation of equations

(9). 1t will be convenient to introduce a new symbol

¥
I(T,y)=f 'u(s)ds -

0 |.1 -7 ue(s)J

where y will typically be taken to be 2z’ or [). This integral appears in
expressions for dg / 8r and 0g / 0z so its introduction simplifies expressions for

J and J~l. Written in integral free form, J is the three by three matrix

—ru(z’) -1

172 ll/
l1 — r2u?(z )J v(zI —rzvz(z’)J

J = 0 2/(r,D)-I(r,z") T{ZI(T,D)—I(T,Z')}

0 2rv (D) 2
] /2 ll/n?
|.1 -7 vz(D)J w(D)11 —’1'2’1}2(.0)]

The coefficients of J are usually written in the (g,z,t) coordinate system. This
time we are more interested in J 1, since that matrix can be used to display the
wave equation in (r,z*,D)-space. If J, as written, is inverted, then the result will

be /! in the desired coordinate system. Performing the matrix inversion,
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[ 2 ]/rz' 2¢ 3] [ RPN L
l1-—'r'u(z ),I [ (2)—rv (D)J ’U(D)l1 —reue(z )_|

1 'u(z’)ll 1—r ’UZ(D)HZI(T DY—I(r,z )] 2u(z )l1 -7 'Uz(D)] ”
51 = o 1 —rv (D)
1—r ’UZ(D)HZI(T DY—I(r,z )] 211 —r "uz(D)J
o —'r'uz(D) v (D)
1-r vz(D)J 21(r,D)—I(r,z )} 21 —r 'UZ(D)J

The matrix /7! is needed to rewrite the one-way wave equation in
(r,z’,D)-space. The expression for the one-way upgoing wave equation in the
new coordinate system makes use of equations for 8%/ dg?, v ?(2)9%/ 8t%, and

d/ 0z in the new system. Dropping terms proportional to 8/ 8D and to 3/ 8r,

1 82 4(J)) a?

v¥(z) 8t% 'uz(z’)l1--'r vz(D)J {2[(')~ D)-I(r,z’ )}2 or?

S(D)v‘z(z') 9% 2(1))11 2(2 ) a°

l1—-'r vz(D)J [ZI(T,D)—[(T,Z')} ordD 4l1 rvz(D)J 0.0?

8° 1 92
dg? |l 1~r 'uz(D)HZI(r D)y—i(r,z )}2 or®

_ Tv(D) 8* _r*R(D) i

|.1 —r2y3(z )J {ZI(T,D)—[(T,Z')} ordD 4l1 -r UE(D)J 9D*
8 _ @ ‘l(z')[wz(z')—'mz(l))} P
%2 8z | i [ ar

{1 — r2y?(z )] {1 —Tzfuz(D)HZI(T,D)—[('r,z ’)j

[ ]1/2
U(D)l1 —rzfuz(z’)J P

2 8D

+ 1/
2u{z )l1 - vz(D)J

When the above relationships are plugged into the one-way wave equation
there will be ambiguity to resolve. There will be many ways in which to
approximate the square root. The criterion that will be used here is to derive a
partial differential equation that resembles equation (5) as closely as possible.

The one way wave equation for upgoing waves is formally
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auU + oUv 8l - e @
dz’ 0z 0z’ 8z 9z

[y s g
|

vR(z) Bt? dg? -

in terminology that mixes coordinate systems. Combining the last four equations

8 3 2] 1/2
67_ 6z” ] J] v (10)

yields a form for the one-way wave equation in NMO coordinates. Moreover, the
zero order approximation to the square root is of the form 8 // 3z " = 0 by design.
This is the same zero order equation as that found in the constant velocity

discussion. Thus, the one-way wave equation is

[1 2 2( ']—1/3[ o o ] [1 _— ']112
aU l-—'r'u z)j l'm) (2)—rv (D)J U v(D)l — r2u%(2z )] aU _

oz’ 'u(z’)l1 —r vz(D)HZI('r DY-I(r,z )J O oy(z )l‘ — r2u2(D)] v eD
]—z/e[ ] [ ]1/2 2
|.1 —ruR(z )J l’mz(z')-—r’u’a(D)J 8 'u(D)l1 - 'rz'uz(z')J 8
] 20 1oy 1] Tar © 2, 172 3D
viz )l1 —r?y (D)“Zf(’r D)—I(r,z )J 2u(z )|.1 — 72y (D)j
1 62 1/2

U
11 —F 'uz(D)“1 2Rz )1{2[(7' D)—i(r,z )]2 or?

Fortunately, this lengthy partial differential equation has a simpie fifteen degree
approximation. The reason for this is that the leading zero order terms cancel by

construction. The result is a partial differential equation like that in equation (5),

TN 2 I [y reyrian ]
- I ¢ )J v (z)-rv | 8%U v(D)l —reu~(z )J P _
’ 2 ’
v(Z’)l1 -7 vz(D)J{ZI(r DY-I(r,z )Jl 9z"or v(z’)p - vz(D)J "% 8="8D
—1 92U
ar? (11

|.1 - 'uz(D)“1 —rRy?(z )}{ZI(T,D)'"[(T,Z ')}2

with an extra 8%/ 8z ‘9r term.

Lateral varying velocity functions can be incorporated with a thin lens term.
Let #(r,z ‘) denote the laterally varying acoustic velocity function of the earth

and retain v(z’) as the transformation velocity for the radial/NMO coordinate
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system. Under these circumstances, another term should be included as an
argument to the square root function in equation (10). In notation that mixes
coordinate systems, the third additive term should be

[ 1] g

72 (r,z") vR(z7) | ot?

If the 15 degree approximation is applied to the one-way wave equation under

these circumstances, the result is a first order equation in z* with two additive
terms. This differential equation can be split into two differential equations to be
solved in alternating order at every z’ step. One of the equations of the split is
equation (11), and the other is a thin lens equation

2[1 2u®( w2 Z(D)] ( )[1 2y? ')]1/2
[1-7%v 2)1 lr'v(z)—r'v | e%u "uDl—'r'u(z_I 82

’, + r
'u(z’)ll1 —TEUE(D)HZI(T,D)—[(T,Z')} Bz dr 'u(z’)ll1 -—'rg'uz(D)}Ug 920D

w2y ] r2u4(D) 82U
_ , 2
7¥(r,z") vz(z')'p —rzvz(D)} [ZI(T,D)—](T,Z')F or?

rv(D)v 3(2) 92U N v¥(Dw*(z") 87 U]
372
{1 —'rzva(D)} {2[(7‘,D)—[(r,z ’)] ordD 4{1 —7"21)2(1))1| oD% J
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