CHAPTER 1

The Cartesian Method of Profile Migration

Profile migration consists of the downward continuation of an upgoing
wavefield recorded by the geophones, the downward continuation of a downgoing
wavefield caused by a shot, and imaging. The Cartesian method for migrating
profiles performs these three operations in an orthonormal coordinate system with
axes for time, depth, and lateral position. After migration, the profile images can
be stacked to suppress noise. Formal discussions of the operations performed by
a Cartesian profile migration algorithm are found in the first three sections of this
chapter. The fourth section consists of a more detailed description of the
organization of a Cartesian profile migration algorithm that downward continues

both upgoing and downgoing waves computationally.

Downward continuation of the upgoing wave

Downward continuation of the wavefield [/, recorded by the geophones of a
profile, is performed with a one-way acoustic wave equation. The justification for
this procedure involves the approximation of the wavefield recorded by the
geophones as consisting entirely of upwards traveling acoustic waves obeying a
one-way acoustic wave equation. This wave equation is enough as along as

multiples are not overpowering.

A one-way wave equation for downward continuing upwards traveling
acoustic waves can be derived from the full two-way acoustic wave equation.
Consider the two-way wave equation for a pressure deviation wavefield [/(x,z,t)

traveling through a medium with constant acoustic velocity v.
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where x is the lateral position of the receiver recording the pressure wave field

(1

at the surface. If the wave field at the surface is independent of x, so that
U(z,0,t) = f(t), then the wave field in the subsurface must be the sum of a
function of z — vt, a downgoing wave, with a function of 2 + v, an upgoing
wave. A first order differential equation in z that propagates only upgoing waves

is
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where the derivatives are written in operator-style to the left of the quantity
operated upon. This suggests that to get a one-way wave equation out of
equation (1), even when velocity is a function of z, all that needs to be done is

to take the square root of the operators on both sides of equation (1).

The algorithms used in this thesis all use a continued fraction expansion for
the square root of an operator. Alternatively, operator power series or Fourier
transforms could also be used to define an operator square root. Thus, the one-

way wave equation for upgoing waves in a constant velocity earth is
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Equation (2) can be used to continue a wave downwards in z. Given the
pressure wave at depth z, U(z,2,t), the wave at depth z + Az can be found by
solving equation (2). Formally, the solution is
1/8]
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Ulzx,z + Az,t) = explAz[

The exponential in equation {3) has an operator as its argument, so it must be
interpreted in terms of its power series expansion or one of its rational

approximations. Later chapters will be devoted to finding adequate rational



approximations to equation (3).

M ethods for the downward continuation of downgoing wav efields

A relation similar to equation (3) can be used to downward continue a model
of the downgoing wave caused by the source, . This necessitates changes in
the initial condition at 2 = O and in the differential equation that propagates the
wave. The initial condition is altered to model a seismic source, while the
differential equation is modified so that it supports downgoing and not upgoing
waves. Under certain circumstances, it is desirable to use approximate, analytic

solutions to the differential equation.

The surface initial condition for the differential equation for downward
continuing the wave caused by the source should be a delta function (or a low-
pass filtered delta function) of both lateral position and time. Letting z; and f ()
denote the lateral position and causal waveform of the shot, respectively, the

initial condition takes the form D(x,0,t) = f(£)d(x —=x,).

The equation for downward continuation must be altered for a downgoing
wave like D. Formally, an equation like equation (3) for this purpose is obtained
through a single sign change.
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Equation (4) can be implemented for the numerical downward continuation of the

downgoing wave [D.

Getting images from downward continued [/'s and D's will require stripping
off and appropriately scaling that part of U that is time coincident with 0. One
way to do this is to calculate the frequency domain quotient [/ / D; Therefore,
estimates of 1/ D will be needed for getting images from downward continued

profiles. Unfortunately, there is nothing about the structure of either equation (4)
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FIGURE 1.1. A marine shot profile, The Cartesian method was used to downward
continue the data set in this figure. The data has been trace balanced but is not
deconvolved. The near offset, appearing at the far right, is 238 meters distant
from the shot. The data is sampled along the geophone axis at a 50 meter rate.
The events marked S, P1, P2, and P3 are primary reflections.
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or the initial value of D at z = O that guarantees D ¥ O everywhere for all
frequencies. Spectral zeros can be expected when variable velocity and
absorbing side boundaries are used during downward continuation. Therefore, an
analytic expression for [J, when available, may be preferable to a computationally
determined [ estimate. Two ways of getting an analytic expression are ray

tracing and a rms velocity approximation.

Ray tracing is one way to get the phase information of the downgoing
wavefield without really downward continuing the field. In a vertically varying
acoustic medium ray tracing from shot position (5,0) to a scatterer position (x,2)
is easy, yielding a travel time for the trip along the shot-to-scatterer ray. Let
T(z,z,s,0) denote this travel time. Given T, a good approximation to the
frequency domain representation of the down-going wave field caused by the

shot is
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The ease with which the ray tracing is done governs the usefulness of this
approach. The ray parameter of the ray connecting the shot to the scatterer can

be found by iterating according to the scheme
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that converges as long as the scatterer is not at a position where the ray is
either critical or super-critical. In the critical or super-critical cases, the
migration output can be set equal to zero. If p is known, T is found by using

z
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FIGURE 1.2, Cartesian downward continuation and [/D° imaging. The Cartesian
method was used to downward continue the data set in figure 1.1. An image was
constructed from the downward continued upgoing and downgoing waves using a
reflection coefficient estimator of the form T UD®. Zero offset appears some
643.5 meters from the trace at the far right. The geophone spacing on this image
is still 50 meters, so the zero offset trace is about 13 traces from the right edge
of the plot.



If an analytic representation for the downgoing wave is desired, then 7 can
be approximated by using a root-mean square wvelocity approximation. This
approximation is accurate at near offsets and is incapable of distinguishing
between sub-critical and super-critical zones. When the approximation is used to
image a downward continued profile, a refraction artifact may dominate the
output. The rms velocity approximation for the downgoing wave has the same
form as the ray tracing estimate for [J, but uses
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Imaging by time coincidence of upgoing and downgoing waves

Images of the subsurface can be obtained by frequency domain division of
the downward continued upgoing wave by the downward continued downgoing
wave. Let D(s,g,z,f) denote the downgoing wave in a profile caused by an
impulsive source exploded at time f = 0 and lateral position s on the surface of
the earth. Let U(s,g,z,t) denote the upgoing wave caused by scattering of
D(s,g,z,t). If at depth z there is a planar reflector with reflection coefficient c,

then

U(s,g,z,t) = ~U[a!l." {c(s,g,z)d(t - t’)]D(s,g,z,t’) =c(s,9,2) D(s,9,2,t°)(5)
where the reflection coefficient is assumed to have a delta function time
dependence. The assumption of delta function time dependence implies that the
temporal spectrum of ¢ is flat. An approximation to the reflection coefficient at
t =0 can be obtained by adding frequency domain quotients of the form
U(s,g,2w)/ D(s,g9,2,0), where U(s,g,z,0) and D(s,9,z,0) denote the frequency
components of the upcoming and downgoing waves of a profile, respectively.
Frequency domain division really yields a reflection coefficient EO estimate that

may be different from ¢ because of noise contamination. If N(w) is the number of



discrete frequencies, then one reflection coefficient estimate is

1 N py(s,g,2,0)
N(@) =, D(s,g,2,0) (6)

If the radiation patterns of the sources are corrected for, and if the migration

Cols,g,2) =

velocity used in downward continuing I/ and D was the correct one, then the
reflection coefficient will be independent of illumination, so 50 will be independent
of s. Stacking over s under such conditions would suppress noise and coherent

events not modeled by the acoustic wave equation.

The reflection coefficient estimate in equation (6) will not be well behaved if
there are zeros in the spectrum of the downgoing wave. Here a noise model must
be incorporated in the imaging step. If the noise time series is white and additive,
then the convolutional model yields a sequence of increasingly sophisticated and

noise sensitive reflection coefficient estimators:

¢ (s,g,2) = N( ) U(s,g z,0) D’(s,9,2,0)
- N{w) D’(s,9,2,w)
92(8,9,2) N( i U(S’g 2 G)) ID(S,g,Z,w”
N >
- D’(s,9,2,0)
03(5,9,2) .N( i Uls,g,z ,62) ID(S,Q,Z,&))IZ + g(z? + 2?)1%

These estimators differ in their treatment of the amplitude spectrum of D, but
preserve the phase information. The estimator 53, justified with an argument from
linear estimation theory, is the best estimator in the absence of noise. The
parameter g is related to the signal- to-noise ratio. As g is increased, Es is
asymptotically equal to 31. In practice, 53 is too noise sensitive for the purpose

of estimating reflection coefficients using common shot profiles.

Application of the Cartesian method to a marine profile

The most general of the downward continuation algorithms discussed in the

preceding sections involved the downward continuation of both upgoing and
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FIGURE 1.3. Cartesian downward continuation and D’/ | D | imaging. This image

was constructed with the same scheme as that in Figure 1.2. This time, however,

The sea-floor reflector at 2000 meters depth is still severely effected by

aliasing of the data along the geophone axis. Other important events occur at

a reflection coefficient estimator of the form SUD"/ | D| was used instead of
depths of 2400, 2800, 3200, and 3400 meters.

nUD".



downgoing waves by computational means. The fully computational Cartesian
algorithm is able to extrapolate upgoing and downgoing waves in acoustic media
that vary both laterally and vertically. Cartesian algorithms that downward
continue the downgoing wave analytically are cheaper but cannot cope with large
lateral velocity variations. A computational version of the Cartesian method for
downward continuing shot profiles was applied to the marine data set of figure
1.1. The profile has 48 channels spaced 50 meters apart. The near offset
distance is 238 meters. The sampling rate along the time axis is 4 milliseconds.
Ten seconds of data were recorded, but only the first five seconds were
downward continued. Much of this five seconds is devoid of significant acoustic
energy, so multiple reflections are absent from the part of the profile under
consideration. Finally, a significant lateral velocity variation is present because

the depth to the sea floor is increasing with increasing offset.

The results of applying the Cartesian method with reflection coefficient
estimators 61 and 52 appear in figures 1.2 and 1.3, respectively. Implementation
of the estimator ¢, was not even attempted because of its noise sensitivity in
regions where ) has spectral zeros. The sampling rate along the vertical axes of
both plots is 10.67 meters. Because padding applied before the migration, the
near offset of the output files is equal to -643.6 meters. Thus, zero-offset

occurs about thirteen traces away from the edge of each of the displays.

In implementing the Cartesian method, a constant velocity, frequency domain
approach was used to downward continue both upgoing and the downgoing waves
through most of the water column. The sampling requirements and dip limitations
for the frequency domain algorithm are, of course, far less constraining than those
for finite difference operators. Finite difference techniques were used for

downward continuing the two waves through the sea floor and sediments.
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Apart from a time-variable gain, the plots are remarkably similar. The
estimator ¢y was not implemented satisfactorily because of difficulties
associated with choosing a spatially varying . Bad choices of & make 53

excessively noise sensitive.
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