APPENDIX A

Synthetic Datasets

Synthetic datasets were computed for this thesis using the analytical ray
tracing formulas. Models consisted of dipping linear reflectors in constant velocity
and linear depth velocity media. Traveltime equations for separated source and
receivers were adapted from Slotnick (1959). A three point wavelet (1,3,1) was

convolved onto the traveltimes.

Constant Velocity Media

Equation (A.1) is the traveltime of a dipping linear reflector for the geometry of

Figure A.1.

| L |
0 source receilver

A

ref lector

FIGURE A.1: Ray tracing in constant velocity media, Geometry for ray
tracing in constant velocity media. The distance between the source and
where the reflector intersects the surface is s. The source - receiver offset

is f.
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t = -:)—\/fz+4ssin2cx(s+f) (A.1)
It is derived by putting a mirror image of the seismic experiment on the other side of

the reflector.

Linear Depth Velocity Media

Given a linear increasing depth velocity function of the form v, + az, Slotnick

showed that the raypath to a dipping reflector is a circular arc with a travel time

a®(z? + 2?) ],
2ugug + az)j

[
t = —l—cosh‘ll1 + (A.2)

The total travel time is the sum of that along raypaths from the source and receiver

meeting at the reflector as shown in Figure A.2.

a?[(s + f -2)? + (ztana)?]
2ug(ug + axtana)

t = 1——{cosh_l 1+
a

] + (A.3)

1+

h~1
{cos 2vug(ug + axtana)

a?[(z - 5)? + (ztana)?] ]
J

Since x is unknown in equation (A.3), it is constrained by Fermat's principle to give

< X —=

FIGURE A.2: Zero offset linear velocity media. Ray tracing for zero offset
experiment in linear increasing depth velocity media.
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the minimum travel time. This equation is difficult to solve analytically, so a searching

method was used during the computation of the seismograms.

Some other useful formulas for linear increasing depth velocity media are zero

offset two way travel time as a function of depth,

Vo + az
t(z) = i—ln 9

Vg
depth as a function of zero offset two way travel time,
at
v —
z=—"(e? -1)
a

interval velocity as a function of non-zero offset two way travel time,

EARTH MODEL FOR SYNTHETICS
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FIGURE A.3: Earth model for synthetics. This model consists of two flat
reflectors and four dipping reflectors up to 80 degrees. The velocity

increases linearly with depth.
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[ ]
v(t,f) =wv, Icosh%+ ‘\/coshzg—t—— Llf_ﬁ_1

T (A.6)
at
=wvge ®  (for zero of fset)

and root mean squared velocity.

172
_ g™ -1
Upns (£) = vy [ por (A7)

Common midpoint gathers were computed at every midpoint in the model shown in
Figure A.4. Parameters are: #midpoints = 200; spacing = .5; ffoffsets = 100; spacing
= 1.6; #time samples = 256; sample rate = 1.; vy = .5; a = .01. Selected common

midpoint gathers and common offset midpoint sections are shown in Figures A.4 and
A.5.

LINEAR DEPTH VELOCITY SYNTHETIC CMP GATHERS
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FIGURE A.4: Synthetic common midpoint gathers, Selected common midpoint
gathers generated by equation (A.3) for model in Figure A.3.
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FIGURE A.5: Synthetic constant offset sections. Selected constant offset
sections generated by equation (A.3) for model in Figure A.3.
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APPENDIX B

How to Construct Good Midpoint Slant Stacks

The chief practical problem of midpoint slant stack migration is obtaining slant
stacks free of obscuring artifacts. The two main causes of artifacts are offset
aliasing and truncation of data at the ends of offset spreads. Offset aliasing means
that offsets are too coarsely sampled for some wave propagation angles to be
cleanly imaged on slant stacks. Figure B.1 shows that these artifacts are manifested
as diagonal lines across slant stack gathers. On midpoint slant stack sections, these
artifacts appear as false horizontal events. In addition, Figure B.1 shows that offset
truncation can falsify the time of a reflection in a slant stack. Truncations can also

add diagonal linear artifacts to slant stack gathers.

Schultz (1978) recommended applying mutes and tapers to the dataset in order
to avoid truncation and aliasing artifacts. The technique determining mutes is similar
to computing Snell trace trajectories described in chapter 4. The problem with this
approach is that it assumed some velocity model for the dataset. Then the velocity
independent advantage of slant stacking is undercut. Having to chose a particular
velocity model fails for the same reasons as for CMP stacking. Dipping reflectors
have an apparent high velocity, leading to velocity ambiguity. Also when reflectors of
two different dips coincide on a CMP gather, the velocity model becomes unworkably

multi-valued.

Our approach is to extrapolate seismic traces between existing traces to
counter aliasing and beyond existing offsets to counter truncation. We use velocity
insensitive extrapolation techniques where possible in order to avoid introducing a

velocity bias into the data.
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SLANT STACK OF ALIASED AND TRUNCATED GATHER

roy parameter
0.1

w o

FIGURE B.1: Slant stack of aliased and truncated CMP gather. The linear
artifacts are caused by the CMP gather offsets being too far apart. Missing
near offsets falsifies the times of real reflection events. The elliptical
shaped events should intersect the left axis perpendicularly, but do not.
Missing near offsets also lead to missing reflections in the upper left hand
corner. Missing wide offsets also falsify event times and have missing
reflections, shown in the lower right part of the gather.
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(1) To extrapolate in between offsets, we use the tilted interpolator method of Hale
(1979). A one dimensional cubic spline is applied along a line tilted at the
expected dip of the data. The dip prediction need not be very accurate and is

therefore only weakly velocity dependent.

(2) Burg's method (1976) is used to extrapolate offsets beyond the end of a cable.
Burg's method is nice because is predicts amplitude trends. This method works
best when the dataset is statistically stationary. To make the data appear more
stationary, we straighten curved reflections, apply a Fourier transform over time,
and raise each sample to a fractional power. Normal moveout® is used to
straighten inner offsets, while a squared-offset, squared-time resampling is

used for the wider offsets.

(3) To further help truncation problems, an offset dependent taper is applied to & or

10 edge offsets.

Figure B.2 shows the slant stacks of the same CMP gather as used for Figure B.1,

this time extrapolated. The improvement is astounding.

* Normal moveout applies a time shift which makes a non-zero offset trace look lke a zero-offset
trace.
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SLANT STACK OF EXTRAPOLATED GATHER
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FIGURE B.2: Slant stack of extrapolated CMP gather. The CMP gather used
in the previous figure was extrapolated from 24 to 106 offsets. Three
offsets were interpolated between each existing offset and eight missing
inner offsets were extrapolated. Also the five innermost and outermost
offsets and direct arrival were tapered. Most of the slant stack artifacts in
the previous figure have been reduced, leaving cleaner and more accurate
slant stacks.
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APPENDIX C

Frequency Domain Slant Stacking

Equation (2.6) leads to an inexpensive way of constructing slant stack gathers

in the frequency domain.

kp

o= —-2p (2.6)

This equation is a straight line in two dimensional Fourier coordinates (k,,w). The

procedure for slant stacking in the frequency domain is
(1) Fourier transform the CMP gather in two dimensions, h—k, and t »w.

(2) Extract slant stacks for as many ray parameters p as desired by interpolating

along the trajectories of equation (2.6), &, »p.

(3) While in the frequency domain, apply a coordinate transformation correction

which is the Jacobian | w] (Thorson, 1978).

(4) Finally, Fourier transform back into the time domain, w—*£.
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APPENDIX D

On Selecting the Ray Parameter Values

Reasons for More Than One Ray Parameter

Theoretically, the structural image (traveltimes) of the earth's subsurface

should be the same on each migrated angle-midpoint section independent of ray

parameter. However, there are several reasons for migrating sections for more than

one ray parameter. These reasons hold true for both slant stacks and Snell traces.

(1)

(2)

(3)

(4)

One can perform velocity analysis, either before or after migration, using
different ray parameter sections. The traveltimes to a given reflection will vary
between different ray parameters if the dataset is unmigrated or migrated for an
incorrect velocity model. Equations giving these variations as a function of

velocity are given in chapters 2 and 4.

One major cause of differences between angle-midpoint sections are missing
near and wide offsets in the typical reflection seismic survey. This results in
missing data on certain parts of angle-midpoint sections. Figure B.1 illustrates
this problem. Summing several different ray parameter sections together will fill

the blank spots.

Summing several migrated angle-midpoint sections together increases signal to

noise.

Summing different ray parameter sections together increases lateral resolution.
Bolondi et. al. (1981) demonstrated that each offset (& ray parameter) has a
different spatial frequency content. Summing together more than one correctly

migrated offset section enhances the overall lateral resolution.
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(6) In some processing schemes one might want to invert angle-midpoint sections
back into constant offset sections (chapter 3). A range of different ray

parameters is necessary to recover a range of offsets.

(6) Outside the scope of this thesis, yet important, are the amplitude variations
between different angle-midpoint sections. This amplitude information contains

stratigraphic information.

Ray Parameter Range

The ray parameter range should fit that of the data. In the case of slant stacks
the ray parameters are the time slopes of events on a common midpoint gather.
There is a minimum and maximum time slope depending upon the offsets in the common
midpoint gather and the subsurface velocity structure (Figure D.1). In no case should

the largest ray parameter be greater the inverse of the lowest velocity in the data.

In the case of Snell traces, the ray parameter is related to the trajectory of the
radial trace. The small ray parameter Snell traces will go through the short (perhaps
non-existent) offsets. Likewise, large ray parameter Snell traces may be mostly off

the cable.

In this thesis the minimum and maximum ray parameters were such that no more

than 50 percent of the slant stack or Snell trace were blank.

Number of Ray Parameters

Summing together more than one angle-midpoint section increases signal to
noise. However, each additional angle-midpoint section means the cost of an extra

migration.

The signal to noise increase of a slant stack lies between that of a single
unstacked trace and a common midpoint stack. Slant stacking sums together data

across the width of a Fresnel zone (Figure 2.6) which is usually several traces wide
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CMP GATHER
of fset
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FIGURE D.1: Ray parameter bandwidth of CMP gather. If a reflection has a
given time slope, then it will appear on a slant stack for the ray parameter
equal to that slope. Missing inner offsets, which have shallow slopes, put a
minimum bound on the ray parameter range. The widest offset or the slope of
the wide angle hyperbola asymptote suggests a maximum ray parameter.
Steep dipping events (dashed line) will slant stack at the lower ray
parameters.
on a common midpoint gather. This means that the number of ray parameters can be

less than the number of offsets in a common midpoint gather.

However, Snell traces do not have any signal increase over unstacked traces.
In this case, as many ray parameters as offsets should be used for noise reduction.
To reduce the number of migrations, one could substack several adjacent Snell
traces. To improve the quality of the substacks, one could apply a moveout
correction to each Snell trace. Fortunately, the moveout correction is a time
independent constant. That is because the ray parameter of the substack (the ray
parameter of the middle Snell trace) is the time slope of the data and determines the

moveout correction.
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FIGURE D.2: Snell trace separation. These are Snell trace trajectories
across a CMP gather with linearly increasing depth velocity. On the left the
interval between ray parameters is the same. Here there is a bunching of
trajectories at wide offsets. On the right the interval between Snell traces
increases geometrically by a factor 1.2. It is more evenly sampled.

Distribution of Ray Parameters

Choosing ray parameters at fixed intervals causes the Snell traces to bunch up
at wide offsets (Figure D.2). If the dataset is sampled too much in one area, then
the signal to noise may not be improved too much after stacking. The magnitude of
this problem depends on how rapidly velocity varies with depth. A geometrically
increasing interval between ray parameters improves the sampling (Figure D.2). This

means that the sampling is biased toward smaller ray parameters.

Bolondi et. al. (1981) found when it comes to enhancing lateral resolution, an
even offset-squared distribution is better than an even offset distribution. That

means to more closely sample wide offsets than near offsets. Since offset is
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directly proportional to ray parameter (equation (4.4)), an even ray parameter-
squared distribution may best enhance lateral resolution. Note that this suggestion

conflicts with that of the previous paragraph.
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APPENDIX E

The Double Square Root Equation

The double square root equation is used to extrapolate into the earth the
wavefield recorded by separated sources and receivers located at the earth's

surface.

Derivation
The derivation begins with the differential equation which extrapolates a time

varying wavefield P in the depth z direction

[ o]
98 _ | 9Ly 0F (E.1)
0z

dz | 0Ot
The bracketed expression is the change of wavefield traveltime with depth. It

Incorporates the geometry of the sources and receivers. Depth variable velocities

can be handled by successively propagating across thin constant velocity layers.

Consider the case of a slanted plane wave recorded by an array of receivers as
shown in Figure E.1. The lateral coordinate is denoted by g, standing for geophone

coordinate. Figure E.1 shows that the change in wavefield traveltime with depth is

8t _ cos@
8z w (E-2)
The statement of Snell's law in the frequency domain
i k
SInQ =p = g (E.3)
v w

is used to rewrite cos@ in quantities ky, and » which are measurable from the
recorded wavefield. Inserting equations (E.2) and (E.3) into equation (E.1) and
Fourier transforming over time gives the depth extrapolation equation for plane

waves.
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FIGURE E.1: Slant plane wave. Geometry of a slanted plane wave recorded

by a row of geophones.
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(E.4)

Equation (E.4) generalizes to wavefields more complex than plane waves by

computing it for every value of k;, and w.

The next step is to determine 9f/9z for an array of both sources and

receivers. The lateral coordinate of the sources is named s, also known as the shot

coordinate. The wavefield traveltime is expanded to include both sources and

receivers.
dt = at dzg + at sz
dzg Ozg

All three depth coordinates are the same.

z, =23 =2
8t / 9zy is the same as for equation (E.4).

[ L]z-[&—]z
v { @

'|1/e
ot
0z,

The reciprocity principle is invoked to find the other term.
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1/2
k, 2]

w

ot

oz, (E.8)

(2
1 -
ﬂ

Inserting equations (E.5) through (E.8) into equation (E.1) gives the double square

root equation for depth extrapolation of a wavefield recorded by separated sources

and receivers.

0F _
0z
G and S are shorthand for the wavenumber ratios

—-i:—{ V1-6° + V1 -52] P (E.9)

G=—2L s-= (E.10)
The extra minus sign in equation (E.9) provides the correct direction of extrapolation

for a reflection seismology geometry.

Midpoint-Offset Coordinates

Y == h =
S |
source recelvenr

K
g

ref lector

FIGURE E.2: Geometry of reflection seismology experiment. Lateral
coordinates are s for the shot coordinate, g for the geophone coordinate, y
for the source-receiver midpoint, and h for the half offset. Earth angles
include dip o, reflector incidence raypath half angle 28, and surface raypath
incident angles -ys and vg.
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This thesis uses midpoint-offset coordinates (y,h) rather than field coordinates

(s,g). The relation of these two coordinate systems is depicted in Figure E.2.

2 2
To find the the equivalent wavenumber relations, we first perform a chain rule

derivative expansion of field coordinates in terms of midpoint coordinates.

oF or
_+ .
3 ah (E.12)

9P aP
3s ~ 8y 8s ok oy _ 2 |0y aT] (E.13)

Then we Fourier transform equations (E.12) and (E.13) using the Fourier domain

8P _ 0P dy , BP dh _ 1

8g dy dg O8h By 2

9P _ 0P By , 0P dh _ 1

derivative rule and divide out an i/° factor to obtain the desired relations.

_ky + Ky
I
Inserting equations (E.19) into equation (E.9) gives the double square root equation

(E.14)

in midpoint-offset coordinates.

3P [ ] (E.156)
= 2 VT (YRR V(Y B P
ik v
As before, a shorthand is used.
k
g = Zn (E.16)
2w

Geometric Interpretation

The wavenumber ratios &, S, Y, and H have physical interpretations both in the
earth and on the data. (¢ and S are sines of angles according to Snhell's law

(equation (E.3)). These angles are the raypaths incident to the source and receiver

as shown in Figure E.2.

G = siny, S = -sinys (E7)
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The minus sign gives both angles the same direction of rotation.

Since midpoint and offset are not physical data recording dimensions, it is not
readily apparent how to physically interpret Y and 4 in terms of earth angles. Figure
E.2 gives the relation between reflector dip angle o, offset incident angle 8, and
wavefront angles y, and v, (derived by Rob Clayton).

Vg =B+ a s =B - (E.18)

H and Y may be solved for in terms of o and 8 using equations (E.10), (E.14), (E.16),
and (E.17).

Y = sina cosf H = sinf cosa (E.19)

Y is mostly reflector dip at small offsets. A is mostly offset angle when dips are

small.

On seismic data, &, S, Y, and H are slopes of reflection events. (7 is the data
slope on a shot profile (all of the records for a given shot). S is the data slope on a
common geophone gather (all of the trace recorded at the same geophone location).

Y is the slope on a midpoint section and H is the slope on a CMP gather.

Conventional Processing

The double square root equation (E.15) decomposes into operations describing
conventional CMP stacking and migration of these stacks. A stacked section
simulates zero offset. The offset angle #8 is zero. Then according to equation (E.19),

H becomes zero. The double square root equation reduces to

8P _ AT p (E.20)
0z v

Likewise, we obtain an equation for the conventional stacking of flat events by
setting the reflector dip o equal to zero in equation (E.19). Y goes to zero and the

double square root equation becomes

- 83 -



9r _ —27:;’—\/1 “HE P (E.21)

0z

We have not been able to obtain a mathematically exact formula for stacking
dipping reflectors. Permitting the cosa part of H in equation (E.19) be non-zero is a
first order correction identical to the cosine velocity correction. However, the
assumption Y =0 wused in deriving equation (E.21) is then wrong. Various
alternatives to CMP stack migration which implement the double square equation more

effectively are discussed in this thesis.
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APPENDIX F

Stationary Phase Derivation of Radial Trace Migration Equation

The purpose of this derivation threefold:

(1) It is a direct way of deriving the radial trace migration operator from the wave
equation. However, this derivation is not as clear or simple as the one given in

chapter 3.
(2) 1t gives amplitude corrections which should be applied during migration.

(3) It shows how the constant offset migration methods of Hale (1983) relate to

the methods of this thesis.

Much of this derivation directly follow's Hale's thesis (1983).

Migration Integral

We begin with Stolt's (1978) migration algorithm.

dw

Pk, ky ky) = k.

PColkyky ky) Ky k) (F.1)

Migration is essentially a frequency domain shift from the time axis to the depth axis.
The shift is given by the dispersion relation w(k,,ky,kh). Hale suggests doing the

frequency domain shift in the following integral to avoid wavenumber interpolation.

Plkyk, k) = [ dt Ptk ky) [M g s Ky kn) (F.2)
lakzj
This is the basic migration integral. In order to migrate radial traces, which are the

data at a constant ratio of offset to time, we need to inverse Fourier this integral to

offset.
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dw eitu(k,.lcy.lch)—ikhh

Plica,ky ) = [ dt P(t jey,h) [ diy 7
z

(F.3)

When we solve the k, integral we will again obtain a migration equation of the form of

equation (F.2) except with a new dispersion relation w(kz,ky,h).

Stationary Phase Solution of Migration Integral

The greatest contribution to the k, integral in equation (F.3) is when the
exponential phase is most slowly changing, i.e. at minimum phase. The phase,
denoted by @, is

0 =wt-kh (F.4)
where the dispersion relation w(k,,k,,k;) comes from the double square root

equation (F.21).

k.2
W= 12’—-[ 2+ k2 + k201 + ;—’{2—) 1472 (F.5)
z

The stationary point is at

00

ok, =0 (F.8)
8w _ h
ok, t

A fair amount of algebra leads to the solutions

- 2h 4p? | ..
ky = = kR EE+E2Q1- ﬁztz 1% (F.7a)
~ g 4hr? | .
0= [ kZ+ kD 1[kE+kF(1- —2) ] Loz (F.7b)
N t 4p?
6= 3)2—[ ]Cyz + ]sz (1 - 1}27) i bt (F.7¢)

where the hat denotes the quantities evaluated at the stationary point.

The general stationary phase solution is given by (from Carrier, et. al.)

+ oo

f dz &(z) e®) ~

27]' 1s2 -~ ie(f)im
| 8(z)"|

Specifically, equation (1.3) becomes
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o+ LT
Plkgkyh) = [ dt Ptk h) awte (F.8)

where
v 4h?
W= E_[ kyz + kzz (1- ;—é—t-é—) 1% (F.9)

ot | 2 k2 + k2 ['*
w w

Equation (F.9) is the dispersion relation for migrating constant offset sections. Hale

uses a modification of this equation for the purposes of his thesis.

Radial Trace Migration Equation

The dispersion relation in the radial trace migration equation is the same as
equation (F.9). The radial trace migration equation from chapter 3 is

1/2
4.7

0" .2
8P _ - _"Lz____ﬁl__ P (3.5)
0z - 1- 4r? )
L f
The dispersion relation of this equation is
2
-k
k2= (F.10)
1- 4"2
v

It is simple algebra to verify that equations (F.9) and (F.10) are the same if the radial

trace definition r=h / { is made.

Therefore, equation (F.8) may be used to migrate radial trace sections. Unlike
equation (3.5), this new migration equation describes an amplitude correction due to

translation into radial trace coordinates.

-87 -



APPENDIX G

Migration Implementation

The phase shift method (Gazdaz, 1979) was used to implement the migration
equations presented in this thesis. It is the most accurate method for dips to 90

degrees in depth variable velocity media, although it is relatively slow.

The migration equations presented in this thesis were first order differential

equations of the form
0P(w,z.k) _

oz
To avoid numerical complications when choosing the dz size, equation (G.1) is

-v;j—@(w,z,_lg) P(w,z k) (G.1)

transformed to zero offset coordinates dt = v(z)dz.

3—1:: - iw B(w,Tk) P (G.2)
The solution to this equation is
P(w,T + ATk) = P(ew,Tk) e 10T (G.3)

Depth variable velocity media are modelled as a pile of thin constant velocity layers.
Equation (G.3) extrapolates across each layer. The cumulative extrapolation is

T . 8

-wfd'r-o—: (G.4)
0
P(o, k) = P(w,7=0,k)e

The extrapolation stops when the sources and receivers are just above the reflector.
Here there is zero offset and zero travel time to the reflector. This is known as the
imaging condition. The left hand side of equation (G.4) is inverse Fourier transformed
for zero travel time to obtain an image. Zero time in the frequency domain is just the

sum of all frequencies.
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. (6.5)
—iufd-rg%
P(o,mk) =), P(w,7=0k)e °
w

Equation (G.5) is what is programmed into the computer.

Equation 5 implies that each output point is an inner product of a length equal to
the number of frequencies. Therefore, the computation grows as the square of the

number of time samples. Various shortcuts reduce the expense:

(1) There is a conjugate symmetry in the real-to-complex Fourier transform. Only

half the exponentials need be computed.
(2) Real seismic data is band limited, so not all the frequencies need be computed.

(3) When velocity changes slowly with depth, 3%/ 87 need not be computed every T

step.

(4) Lookup tables can be used for square roots and trig functions.
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APPENDIX H

Migration of Field Coordinate Slant Stacks

Several other workers have suggested slant stack migration schemes
(Ryabinkin, et. al., 1962; Schultz and Claerbout, 1978; Taner, 1978; Phinney and
Jurdy, 1979; Garotta, 1980; Treitel et. al,, 1981). All these schemes are similar to
mine in that the migration of unstacked data is a two step process. First, some kind
of slant stacks are constructed. Second, the slant stacks are migrated. The major
difference between all of the above cited schemes and mine is that the slant stacks
are made on shot profiles or common geophone gathers, while | use CMP gathers. The
tradeoffs between the two coordinate systems have been discussed in chapter 1. In
brief, midpoint coordinates are more workable than field coordinates, but field

coordinates are able to handle lateral velocity variations better.

There are some other differences between the various schemes. Most perform
the slant stacks in the computer, though it has been electronically (by time delays) in
the seismic records during recording (Ryabinkin et. al. 1962). The migration stage
uses either the wave equation (Schultz and Claerbout, 1978; Taner, 1978) or ray

tracing (Rybinnkin et. al. 197 2; Phinney and Jurdy, 1978).

| shall describe how two of the migrations may be done. (] am not certain,
because details have not been fully published in English). Both of these descriptions
proceed from the double square root equation (appendix E), which is a general

formula for migrating unstacked data.
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SIMPLAN

Taner's SIMPLAN' process (1978) slant stacks shot profiles. A mathematical

description this kind of slant stacking is similar to that derived in section 2.3.

k

-2 - (H.1)
w  Po

Since Taner is stacking accross geophone offset g instead of midpoint offset h, the
lateral wave number and ray parameter are subscripted by g to denote the

difference.

To obtain an equation for migrating shot profile slant stacks, we will begin with

the double square root equation in field coordinates.

9_._’;_ _.fa)[ _ 2 ~ 2.‘
3 '1,—1}—1\/1 G? + V1 SJP (E.9)

The definition of shot profile slant stacking, equation (H.6), resembles the definition

of G given in equation (E.10).

k
G =L (E.10)
W

An equation for migrating shot profile slant stacks is derived with replacing G in the

double square root equation by the formula for shot profile slant stacking.

(H.2)

Q_fi__‘fa)l. 2.2 NZEE g]
3s - szpgv + V1 SJP

Equation 6 can be broken down into two operations. First, the slant stacks are
migrated with a single square root operator /1 - S%. This is the same operator used
for migrating CMP stack sections, so already existing programs can be used. Second,

a time shift correction \/1 _pgzy_z is applied.

* Simplan Is an abbreviation for SIMulated PLANe wave.
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Controlled Directional Receptivity

This is one of the most popular migration methods used in the Eastern Block.
This method begins by slant stacking both sides of a split spread profile. One side
gives an estimate of Py- Using the principle of reciprocity, the other side gives an

estimate of p,. Both estimates are needed to solve the double square root equation.

Interestingly enough, in practice CDR uses the midpoint offset form of the
double square root equation (E.15) rather than the field coordinate form. Estimates

for Y and H are obtained from the sum and differences of p; and ps.

v v
Y= E—a)_(pg - Ds) H = —z—w—(Pg + Ps) (H.3)
Values of p, and p,; are picked from the slanted stacks and inserted into a ray

tracing solution to the double square root equation.
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