CHAPTER 2

Migration of Common Midpoint Slant Stacks

2.1. Motivation

Migration with slant stacks of common midpoint gathers is a method which makes
no assumptions which deteriorate with wide offset angles, steep dips, and vertical
velocity variations. Events of different dips which intersect are equally well imaged.
It permits the more accurate velocity analysis after migration when dipping
reflections have been correctly located and diffraction noise removed. Refractions
and post critical angle reflections which appear in slant stacks can also be used to

estimate velocity.
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FIGURE 2.1: Conventional migration. CMP stack migration of a dataset from
the Texas Gulf coast. The geology consists of several steep dipping growth
faults.
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Figure 2.1 shows the migration of a conventional stack of growth faults.
Conventional common depth point stacking had obliterated the fault plane reflections
present in the unstacked data as seen in Figure 2.2. Fortunately, slant stack

migration recovers these fault plane reflections as shown in Figure 2.3.

2.2. Method of Migrating Common Midpoint Slant Stacks

There are three stages to migrating slant stacks. Mathematical details are

given in the subsequent sections.

(1) First construct one or more slant stack sections. Figure 2.4 shows how a slant
stack is done. Rather than sum along the hyperbolic trajectory of conventional

stacking, a slant stack sums along inclined straight lines. A section is made of
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FIGURE 2.2: Constant offset section. A constant offset section from the
same dataset as in Figure 2.1. Faint fault plane reflections are visible at this
offset and most other offsets.
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FIGURE 2.3: Slant stack migration. Midpoint slant stack migration of same
dataset from Figure 2.1. Fault plane reflections are now visible. Lateral
resolution is increased. For both the conventional stack and slant stack
migrations, the same midpoints and direct arrival mutes were used. In both
cases the migration equation was implemented using a phase shift algorithm
in order to avoid inaccuracies in the migration implementation itself. The slant
stack migration is a sum of the twenty different angle-midpoint sections
shown in Figure 2.8.

the slant stack for a fixed slope from each common midpoint (CMP) gather.
(2) Second, migrate each of these sections.

(8) Finally, stack together one or more migrated sections. The main motivation is to
improve the signal to noise in the result. A second reason is that a portion of
the data may be absent on a slant stack made at one stacking slope, while

present at another stacking slope.

2.3. Mathematical Description of Slant Stacking

A mathematical formulation shows how slant stacking relates to wave

propagation. It lays the groundwork for deriving an equation for migrating slant
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FIGURE 2.4: Process of slant stacking. A slant stack trace is formed by
summing along an inclined linear trajectory across a CMP gather.

stacks.

Slant stacking may be thought of as a two step process. First, we apply a time
shift to each trace of a CMP gather. The amount of the time shift is directly
proportional to the offset. Second, we horizontally sum the time shifted traces
across offset. This two step process is equivalent to summing along tilted linear

trajectories across the gather.

Equation (21) is the coordinate transformation for the time shift.

h’ = £’ =t -2ph (2.1)

where h is half offset, ¢ is traveltime, and p is the slope of the time shift. (A factor

of 2 here makes the migration equations look nice later.)

Next we find the frequency domain equivalent of equation (2.1). We first note

that the seismic wavefield P is identical in either coordinate system.
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P(h,t) = P(h't") (2.2)
Then we find the derivatives of one coordinate system in terms of the other.
aP’ _ 8P oP" _ 8F aF

at’ ot ah- ~ an T %P; (2.3)

In the frequency domain these relations are

) kpy” =kp +2pow (2.4)
where w is the traveltime wavenumber and k, the offset wavenumber.
The second step to slant stacking is to sum across offset. In the frequency
domain this is equivalent to selecting the zeroth k, * frequency.
O=kp +2pw (2.5)
In a slightly different form equation (2.5) is the well known frequency domain

statement of Snell's law.

ky, (2.6)

This equation says that slant stacking decomposes the CMP gather into portions with
the same ray parameter p. We use the term ray parameter in the mathematical sense
that it is the invariant in Snell's law and the time/offset slope of the data. However,
the ray parameter concept does not represent raypaths or wavefronts in common
midpoint coordinates. (In other words, one cannot design a field experiment to record

a common midpoint slant stack.)

Equation (2.6) leads to a frequency domain method of slant stacking which is

developed in appendix C.

2.4. Migration Equation for Common Midpoint Slant Stacks

Our imaging principle is that a sub-surface image of the earth is what would be
recorded at zero traveitime if the seismic sources and receivers were located

directly above the reflector. However, we are really recording traveltimes at the
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FIGURE 2.5: Geometry of reflection seismology. Lateral coordinates are y
for source-receiver midpoint, and h for half offset. Depth is z and time is £.
surface of the earth. An equation to downward continue these traveltimes into the

earth is of the form

0P _ oFP
0z ot
The expression ® contains the geometry of the sources and receivers. For a

2.7

horizontal plane wave & is inverse velocity. For a set of sources and receivers

everywhere on the surface of the earth along a straight line equation (2.7) becomes

_1;%_[\/1-(Y+H)2+\/1—(Y—H)2}P (2.8)

P -
0z
Equation (2.8) is derived in appendix E. This equation has been Fourier transformed

over midpoint y, offset h, and time [. These dimensions are shown in Figure 2.5.
Basically, one of the square roots is due to the sources and the other due to the

receivers.
To make the notation more compact, the terms ¥ and /4 represent the ratios

vk vk

These ratios have simpie interpretations in terms of seismic data and earth angles. Y
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is the slope of data on a midpoint section and 7/ is the slope on a CMP gather. In the

earth Y is approximately the reflector dip and H is approximately the offset angle.

Common midpoint slant stacks are an obvious way to implement equation (2.8).
They directly decompose the seismic data into portions of fixed H. A migration
equation is obtained by substituting the formula for slant stacking (2.6) into equation

(2.8).

P _ (2.10)

P -1',:—{\/1 -(Y + pv)? + V1 -(Y—p’u)a}P

We have made no assumptions about dip, offset, or vertical velocity variations in
deriving this formula, so it is exact for migrating seismic data. This formula is
computationally nice because a continuous variable k, has been replaced by a
parameter p, thereby reducing the dimensionality of the equation from three to two.
This equation operates on midpoint sections (y vs. t) composed of a slant stack
constructed from every CMP gather for a fixed ray parameter p. A computer

implementation of the solution to this equation is described in appendix G.

2.5. Lateral Velocity Variations

The migration of common midpoint slant stacks was not designed for lateral
velocity variations. However, there is strong reason to believe that the effect of
lateral velocity variations on slant stacks is not as severe as for conventional
stacking. Conventional stacking also does not take into account lateral velocity
variations. It sums information across the entire cable length. This leads to imaging
and velocity estimation errors (Lynn and Claerbout, 1982). The effective offset
width of a slant stack is usually just a fraction of a cable length. This width is

approximately that of a Fresnel zone as shown in Figure 2.6.
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FIGURE 2.6: Effective offset width of slant stacking. A slant stack selects
data from a CMP gather at the offsets where the linear stacking trajectory is
tangent to the data. The width of offsets contributing to the slant stacking
is approximately that of a Fresnel zone. The bounds of the Fresnel zone are
the offsets on both sides of the tangency point where the reflection pulse is
shifted at least a half cycle at the dominant frequency.

The migration equation (2.10) must be modified in order to handle lateral velocity
variations. The lateral wavenumber, kyinY, is a composite of every space location.
in order to track lateral variations, it must be localized. This is done by inverse
Fourier transforming the wavenumber k, into its space equivalent i3,. Claerbout

(1976) and Jacobs (1982) describe methods of implementing space domain migration

methods.

2.6. Velocity Analysis

The principle of slant stack velocity analysis is the same as for conventional
processing: velocity is a function of moveout with offset. However, on a slant stack
offset has been transformed into ray parameter. Then velocity becomes a function

of moveout with ray parameter.
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FIGURE 2.7: Unmigrated slant stack gather. Collection of 20 slant stacks,
each 5 traces wide, from midpoints 100 to 105 in Figure 2.1. This figure
demonstrates how time decreases with increasing ray parameter p. The
smallest ray parameter is .015 and the interval is .004 millisecond/feet.

Velocity analysis uses a gather of slant traces made at the same midpoint but

for different ray parameters. These are called slant sfack gathers, an example of

which is given in Figure 2.7.

Velocity analysis is performed in a similar manner as is conventional analysis.
Moveout paths for wvarious trial velocities as a function of ray parameter are
computed using the formulas derived below. These hypothetical moveout paths are

matched to actual events on dataset gathers to see which velocity fits best.
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Velocity analysis may be done either before or after migration. Migration
improves the dataset by moving dipping reflectors to their correct subsurface
locations, correcting the distortion of moveout by dip, collapsing diffraction noise, and

increasing overall signal to noise.

The situation for estimating velocity after migration is somewhat different than
before migration. If the migration is done with the correct velocity, each ray
parameter section would appear the same. This implies that migration removes the

original moveout present in an unmigrated slant stack gather (Figure 2.8). However,

MIGRATED SLANT STACK GATHER
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FIGURE 2.8: Migrated slant stack gather., Same slant stack gather as in
Figure 2.6, except migrated. Because the migration velocity was nearly
correct, the time of a reflector is about the same at any ray parameter.
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if the migration velocity is incorrect, then some residual moveout remains. (Figure

2.9) The correct velocity can be determined from this residual moveout.

2.7. Velocity Equation for Unmigrated Gathers

A formula for moveout on a slant stack gather is derived by considering what
happens to a reflection hyperbola on a CMP gather that is being slant stacked.
Recall the two substages of slant stacking. First, a time shift is applied to each
trace, with the amount of the time shift directly proportional to the offset. Then the

time shifted trace is summed horizontally across offset.

Start with the equation of a CMP reflection hyperbola

4h2 1/2
té + ——J (2.11)

t =
v? |

where ! is zero offset time and ¢ is time at half-offset h. Then apply a time shift to
each seismic trace which is proportional to offset

t’ =t -2ph (2.1)
The time shifted CMP hyperbola is

4h2 1/2
t§ + = - 2ph (2.12)

t =

Next, sum horizontally across the time shifted hyperbola. The sum is strongest at the
apex of the hyperbola. The apex is found by solving for the zero of df’/ dh in
equation (2.12) to obtain
t’ = to(1 -pPu?)i? (2.13)
The time £’ is the slant stack time.
Snell's law is invoked to generalize equation (2.13) to depth velocity variations.
Snell's law says that p is invariant with depth in such media, so we just integrate the
derivative of equation (2.13) with respect to depth to find £’. Before integrating, we

must convert infinitesimals of zero offset time into depth
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FIGURE 2.9: Slant stack gather migrated with wrong velocity, Same slant
stack gather as in Figure 2.6, except migrated with a constant velocity.
Because the migration velocity was too high at the top (A) the migration shift
was too much, thereby bending reflections downward. Because the migration
velocity was too low at the bottom (C) some of the original slant stack time
shift which bends upwards, remains.

dz
v(z)

dig = 2 (2.14)

Integrating equation (2.13) gives

z d (2.15)
£ = 2f _vi(.' _pz,uz)ue
)

This equation is used to predict moveout paths for velocity estimation on slant stack

gathers. It correctly predicts that the slant stack time of a reflection decreases as
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the ray parameter increases (Figure 2.7).

2.8. Velocity Equation for Migrated Gathers

A formula for estimating velocity from migrated slant stacks comes from
understanding how migration changes time on a slant stack. It turns out that if the
migration was done with the correct depth velocity function then all slant stack
traces are converted into zero offset traces. However, if a wrong migration velocity
function is used, then the times will differ as a function of the ray parameter p and

the correct velocity.

In order to determine how migration changes the time of a slant stack, we begin

with the equation for migrating slant stacks

9P _ -',;&L{\h (Y +pu)¥ + V1 - (Y -pu)? } P (2.10)
0z v

where 17 is the migration velocity used. Assuming that migration nullifies dip, then the
dip dependent term Y is ignored. Then equation (2.10) is inverse Fourier transformed
over time to give the time shifting equation

9r _

~1 3
32 -2 V ve (2.16)

Bt

The bracketed term is the time shift. The total migration time change is given by

integrating this expression over depth.

f= .2 j L (1 -proye (2.17)
If the migration velocity 17 is the same as the actual velocity v, then the migration

time shift £ is the exact inverse of the original slant stack time shift (£’ in equation

(2.15)).

The next step is to obtain an equation for time shifts as a function of ray
parameter p, migration velocity 17, and actual velocity v. Consider a constant

velocity function. Then it can be solved for the unknown true velocity. The slant
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stack time shift for an event at depth 2 with velocity v from equation (2.15) is

£’ = 5—(1 - py?)ice (2.18)
The migration time shift in the other direction puts the reflector at ;
t'= 5(1-p2?)1” (2.19)
v
We eliminate variables of the unmigrated gather, {’ and 2, by solving equations

(2.18) and (2.19) together for two different p values.

-~ [(1 —pig'uz)(‘l -pzijz) ]I/ZA
= = | .
Tl GpED G pany| CF (2.20)

Equation (2.20) is not as formidable as it seems. It may be interpreted qualitatively

by the following chart.

given p, < p;:

undermigrated
exact
overmigrated

v 21 <2 decreasing moveout
v 2, = 2z Nnomoveout
v z, > 2y increasing moveout

e)e.)e)
v I A

These effects are illustrated in Figure 2.10. It is just an algebraic exercise to solve
equation (2.20) for the unknown actual velocity v.
| 280 -pau™-2f0-pp®» 7

pd22(1 -p2u®) -pl23(1 -piud

v = (2.21)
Equation (2.21) is used to estimate velocity from two or more measurements of an
event on a migrated slant stack gather.

We have not yet found a closed form expression for estimating depth velocity

variation. Instead we use equation (2.21) to iteratively estimate thin constant

velocity layers in the earth.
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2.9. Velocity Estimation from Post-Critical Angle Reflections

Slant stacking manipulates post-critical angle reflections and refractions in a

way which is useful for velocity analysis. Waves near the critical angle have the

highest amplitudes and are useful on noisy data.

McMechan and Ottolini (1980)

showed that slant stacking captures these waves in the form of p -7 curves. Ap -

T curve (Figure 2.11) is velocity p~! as a single valued function of slant stack time

T (Bessanova et. al., 1976). These curves are also useful for velocity analysis

because they express information about velocity gradients between the main

reflection interfaces.
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reflectors and four dipping reflectors up to 80 degrees.
increases linearly with depth.
appendix A.
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Clayton and McMechan (1981) showed that the p - T curve could be converted
to a function of depth using the extrapolation equation (2.16). This method can be
extended to dipping reflectors by using equation (2.10) instead of equation (2.186).
As with pre-critical reflections, unmigrated dipping reflectors distort the p - T curve
by being at wrong sub-surface locations and give a false high velocity. Figure 2.11

shows that slant stack migration improves p - 7 curves of dipping reflectors.

2.10. Synthetic Results

Images from the slant stack migrations of the synthetic of Figure 2.9 are shown
in Figure 2.12 to 2.14. This model was a rather severe case of steep dips, wide
offsets, and depth velocity variation. The migrations worked rather well compared to

conventional processing.

2.11. Conclusions

Migrating common midpoint slant stacks alleviates the steep dip and dip
selectivity problems present in migration of conventional stacks. This method also
appears to increase lateral resolution. Slant stack migration can estimate velocity
after migration when the dataset more truly looks like the earth's sub-surface. Slant
stack migration can also estimate velocity from wide angle reflections and

refractions.
Slant stack migration works well when several conditions are satisfied:
(1) Lateral velocity variations are small within the width of a Fresnel zone.

(2) The receiver arrays have not attenuated the reflections from steep reflectors.
This may be checked by observing constant offset sections and high velocity

conventional stacks.

(3) Care is taken during the construction of slant stacks.
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FIGURE 2.11: p-7 migration for dipping reflectors. These are migrated slant
stack gathers. The numbers on the horizontal axis are the midpoint from
which these gathers were selected on Figure 2.10. Ray parameters
increment by .036. These slant stack gathers include both pre-critical and
post-critical angle reflections. The pre-critical angle reflections are the
horizontal lines (A-A'), behaving the same as in Figure 2.8. The bounding
curve (B-B') also called the p-7 curve, comes from the post critical angle
reflections. The top gathers were migrated according to the zero dip method
of Clayton and McMechan (1981). Dipping reflectors (C1-4) are imaged
incorrectly. The bottom shows the same gathers migrated correctly using the
method of this thesis.
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FIGURE 2.12: Synthetic slant stack sections. These unmigrated slant stack
sections are made from the linearly increasing depth velocity model of Figure
2.10., The ray parameter is given above each section. The purpose of this
model is to test slant stack migration at very steep dips (80°) and relatively
wide offsets. Notice the decreasing time moveout (A1-A4) as the ray
parameter increases. The steep dipping events (60° and 80°) do not have
very steep slopes on a common midpoint gather (appendix figure A.4).
Therefore they are not captured on the higher ray parameter sections. The
extra line on the last panel (B) is a slant stacking truncation artifact.
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FIGURE 2.13: Migrated synthetic slant stacks. Time migrations of the slant
stack panels from the previous figure. These have not yet been converted to
depth. Migration converts each panel into an earth image. Therefore
migration removes time shifts from the unmigrated panels (A1-4). The curved
lines are frequency domain wraparound (B1-3) and reflector truncation tails
(C1-6). These are artifacts due to the computer implementation and not the
slant stack migration itself. These would go away with a more sophisticated
implementation (absorbing sides, etc.). Lines (D1-2) are slant stack
truncation artifacts. Since most of these artifacts appear at different
places for different ray parameters, they tend to disappear when the
sections are stacked together as in the Figure 2.14. The principle that each
migrated section is an earth image means that the valid reflections appear in
the same place in each section. Therefore they will be reinforced after
stacking the sections together.
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FIGURE 2.14: Migration comparisons. The top left is the migration of the
zero offset section, the best possible migration that can be obtain from the
data. However, when near offsets are missing, as on the real world, a
migration of a conventional stack produces the result in the top right. The
lower left is the sum of 50 migrated slant stack sections (Ap=.036). The
upper right is the same slant stack migration, except near and wide offsets
are missing from the CMP gathers (offsets 10 to 40 retained). Both results
are comparable to the zero offset section migration and much better than the
conventional stack migration. The missing tops on the two right sections are

due to missing inner offsets.
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