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5.5 Moveout-Corrected, Radial Coordinates

If the earth were truly inhomogeneous in all three dimensions,
we could hardly expect a single seismic line to make any sense at
all. It says something that reflection seismology usually seems to
work, even when restricted to a single line. It says that the layered
model of the earth is a pretty good starting point. Normal moveout
correction is usually a good idea. Mathematically, we can say that
NMO is an excellent tool to deal with depth variation in velocity, but
its utility drops in the presence of steep dip or a wide dip spec-
trum.

In my first efforts to migrate reflection seismic data with the
wave equation, I began by transforming the data to a moveout
corrected coordinate system. This approach to migration is well
suited to data which is sparsely sampled on the geophone axis. It is
even better suited to data which is sparsely sampled on the shot
axis. When steepness of dip becomes the grounds on which migra-
tion is evaluated, then moveout correction offers little advantage,
indeed, it suffers by its comparative complexity. Improving tech-
nology is leading to much greater sampling density on the geo-
phone axis. However, there is little likelihood that we will see
significantly increasing densities in shot space, particularly as we
work more in three dimensions. With three dimensional data
undersampling is far worse than it was in two dimensions. In this
section the older moveout correction approach will be brought up-
to-date. It could easily see a revival in one form or another.

The U:D Imaging Concept

The U:D imaging concept says that reflectors exist in the earth
at places where the onsel of the downgoing wave is time coin-
cident with an upcoming wave. Figure 1 illustrates the concept. It
is easy to confuse the experiment sinking concept and the U:D
concept because of the similarity of the phrase '"downward con-
tinue the shots” to the phrase "downward continue the downgoing
wave''. The first situation refers to computations involving only an
upcoming wavefield U(s,g,z,t) whereas the second situation
refers to computations involving both upcoming U(z,z,t) and
downgoing D{(z,z,t) waves.

The downgoing wave is usually handled as an impulse whose
travel time is theoretically known in a layered medium. The
upcoming wave could be treated by any of the methods of previous
chapters. Alternately, the upcoming wave could be effectively
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FIG. 1. (Riley) Up and downgoing waves observed with buried
receivers. A disturbance leaves the surface at {=0 and is
observed passing the buried receivers G,;...G5 alt progressively
later times. At the depth of a reflector, =z, the G5 receiver

records both the upcoming and downgoing waves in time coin-
cidence. Shallower receivers also record both waves. Deeper
receivers record only ). The fundamental principle of reflector
mapping states that reflectors exist where U and D are time
coincident. An alternate principle is that the upcoming waves
must vanish for all time prior to the first arrival of the downgoing
wave.

treated by the moveout coordinate system to be described. The
time coincidence can be quantified in a number of ways. The most
straight-forward seems to be to look at the zero lag of the cross-
correlation of the up and down going waves. The image is creating
by displaying the zero-lagged cross-correlation everywhere in
(z,z)-space.

The sinking concept seems to demand complete coverage in
shot-geophone space whereas the U:D concept works for any down-
going wave. It could be the spherical wave from a point source but
it could also be a plane wave or Snell wave. An example of a data
base which could be handled with U:D but not sinking would be that
of a sonobuoy. A sonobouy is a hydrophone with a radio
transmitter. It is thrown overboard and the ship sails away,
repeatedly firing a source until it is out of range. The reciprocal
principle says that the data is equivalent to a single source with a
very long line of geophones.

The U:D concept is used extensively in FGDP for the three
problems of migration, velocity analysis, and multiple suppression.
Later, for the single application of zero offset migration, U:D was
superceded by Sherwood’'s approach of using the exploding
. reflector concept. (I don't know how the exploding reflector con-
cept of seismic migration began, but John Sherwood was the first to
use it to explain migration with finite differences.) Still later, the
experiment sinking concept emerged from work with Doherty,
Muir, and Clayton.
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Moveout /Radial Coordinates in Geophone Space

NMO reduces the problem of spatial alias on the offset axis
because the earth usually has modest dips. But NMO has reduced
utility for data with severe dip or a wide dip spectrum. On the
other hand NMO is especially suited to large depth variations in
velocity. Whatever its merits or drawbacks, NMO commands our
attention by its near universal use in the industrial world.

Our theoretical analysis will abandon the geophone axis g in
favor of a radial-like axis charactorized by a Snell parameter p.
This really says nothing about the implied data processing itself,
since it is simple enough to transform final equations back to
offset. The coordinate system we will be defining will be called a
Snell frace coordinate system. It is similar to the Snell wave coor-
dinate system in that downward continuation by a fixed distance is
mainly just a fixed time shift of the entire (p,t')-space. The
difference is that the Snell wave coordinates measure times by
vertical and horizontal phase velocities, whereas Snell trace coordi-
nates measure all times along rays.

[ (sin ¥)/ v, the Snell ray parameter

tp any one way time from the surface along a ray with
parameter p

g the surface separation of the shot from the geophone

t' one way time, surface to reflector along a ray

T travel time depth of buried geophones, one way time
along a ray

t travel time seen by buried geophones.

’U(P,tp) a stratified velocity function, v’(z), in the new coordi-
nates

Noting that the horizontal distance traveled by a ray in a certain
time is the time integral of v sin® = pv®, we have the coordinate
transform:

t(t'p,7) = Rt'—7 (1)

t T
gt'p.7) = 2p {v(zo,tfp)2 dt, — p {’v(p,t )? dt,, ()

T dt
! o) 3

H

z(t'p,7)

Were the above system to be inverted to get (¢',p,7) as a function
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of (t,g.2z), we would say that surfaces of constant #' are
reflections, surfaces of constant p are rays, and surfaces of con-
stant 7 are datum levels. Unfortunately, the inversion of the
coordinate system cannot be done explicitly. We can still proceed
analytically with the differentials. Form the Jacobian, that is

loy. Ity g4 20| o,
%| = | 9 %p| [% (4)
07 tr 97 2| |92

Performing differentiations only where they lead to obvious
simplifications, we get the transformation equation for Fourier
variables:

[_CO, [ 2 gtv O —C
k, = 0 9p 2 kg (5)
k‘r —1 gT U(T)_l kz

It should be noted that (5) is a linear relation involving the
Fourier variables, but the coefficients involve the original time and
space variables. So it is in both domains at once. This is useful and
valid so long as when we compute second derivatives we do wish to
neglect the derivatives of the coordinate frame itself. This is often
a rather benign assumption, amounting to something like spherical
divergence correction.

I'd like to elucidate the properties of the coordinate frame
without getting bogged down in details. The most obvious approxi-

mation is to set z, to zero. Then the system is essentially tri-

angularized. To get further, faster, just set w =1 in the
definitions and obtain

k
kg = ‘gtr_zj_T (6)
0 = S p gt (?)
b, = k- & (8)
Now substitute these into the familiar square root equation
kb, = —Vof k2 (9)

To see what is new, we simply drop second order terms in Icp and
get
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k., = il

. BT (10)

The full implications for data processing have not yet been worked
out.

CMP, Radial, Moveout Corrected Coordinates

Nothing could be more central to industrial data processing
than NMO at common midpoint. Our first goal is to transform the
DSR equation to CMP, moveout corrected coordinates. We start
with DSR(w,Icy,kh) and do moveout correction which takes w to
w'. The h-axis is then transformed to a Snell p-axis by ray tracing,
thus taking k; to Icp. Setling k:p to zero implies integration over
p at constant (f'y) which is really just a CDP stack. So we
expect to see how CDP stacks should be downward continued. Up
until now we have been pretending that a CDP stack was the same

as a zero offset section or as a CMP vertical stack. Definitions are

el (sin ¥)/ v, the Snell ray parameter

tp any two way time from the surface along a ray with
parameter p

2h the surface separation of the shot and geophone

t’ two way time, surface to reflector and back

T travel time depth of buried experiment, two way time
along a ray

t two way time in buried experiment

’U(P,tp) a stratified velocity function, v'(z), in the new coordi-
nates

Noting that the horizontal distance traveled by a ray in a certain
time is the time integral of v sin® = pvz we have the coordinate
transform:

t(t'p,7) = t'—71 (11)
t'

s
h(t'p,7) = %{v(p,tp)z dt, - g—{v(p,tp)z dt, (12)

T dt
z(t'.p,T) "é—{ 5_(2—0,_};;5— (13)

I wish I could invert the above system to get (¢',p,7) as a func-
tion of (¢,h,2z), butIcan’'t. So we will form the Jacobian, that is
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la,. [ty hy 2| o,
Wl = o ko 2p| Pn (14)
3, t. b, oz | [3,

Performing differentiations only where they lead to obvious
simplifications, we get the transformation equation for Fourier
variables:

[_w’ I. 1 h:tr O [_w
kp| = |0 Ry oz, ky, (15)
k’r —1 h.,r .5’0(7’)_1 kz

The real hazard is that the coordinate system may have a pole
located just where we are planning to extrapolate.

At this stage, a bit of courage is required to invert equation
(15). The results can be substituted into the DSE expressing it in
terms of the new coordinates. The new DSK will not be simple,
nor will it offer special insights until simplifications are made.

In the hopes of elucidating the frame itself without getting into
any of the complexities, I set v = 1 in the definitions and obtained

Lo - P 18
2 t'— T (16)
k
w = o + p —F (17)
t'— 71
k, = Rk, — 2u (18)
which when substituted into the DSR gives
2 211/2
1 pkp ky kp .

]C —_ L ’+ —_ ———— - d tt

r o B v R itto (9 (19)

The new coordinate system has not altered the fact that the
DSR is still not separable in ky and Icp. Setting kp equal zero
achieves separability while keeping full accuracy in lcy. But set-
ting Icp equal zero implies CDP stacking. Thus we get an equation
which shows how CDP stacks really should be downward continued!
The only approximation made is the very reasonable one that
_ derivatives of the coordinate frame itself can be neglected.

To have practical separability we need to neglect terms like
k,ylcp. The way to neglect this product is to get the individual fac-
tors as small as possible. There is really nothing we can do about
Icy which is given to us by the earth. What we can do is to choose a
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good moveout correction function which should help by reducing

.’cp. This says to moveout at the stacking velocity, not the earth

velocity. We should work out the DSR for this case.
A novel approach is to decompose the CDP gathers by stacking
velocity, say

D = D(vy) +D(vyg) + D(vg) + D(wy) + - - (20)

The best technique for such a decomposition has yet to be
described. But let us presume that this can be done.

After the decomposition each D(v;) could be stacked over its
appropriate stacking velocity. Then each could be downward con-
tinued with a migration equation according to the earth velocity.
Finally the decomposed data could be recombined.

Alternately, express each individual panel .D(vj) in its own
moveoutl corrected space. Thus as far as each panel is concerned,
Icyk:p is small thereby justifying separability. Because of the
smoothness in the lateral direction, each panel could be subsam-
pled laterally. You could do full before stack migration of each
panel. All these possibilities have yet to be studied, especially in
regard to their relation to velocity estimation.

There is a focus in the coordinate system itself, and it is
located just where we are headed. Looking back at the coordinate
system near the focus t'= 7, we see that h = Oxp. This means
that the coordinate system is collapsing, the coefficient of the app
derivative will have a pole. As we approach the focused image, the
coordinate system is unsuitable for energy which has the wrong
velocity. This is not a computational disaster, it just means that
the whole conceptual basis for velocity estimation in conjunction
with this frame has yet to be worked out. On the other hand,
perhaps we will be seeking implementations which are immune to
this kind of difficulty.

Anyway, whenever you are ready for it, the separable approxi-
mation is always available

SEP(k,.k,) = DSR(k,.0) + DSR(0k,) — DSR(0,0) (21)

To look at prestack partial migration, convert lcp back to k.

. I always think of prestack partial migration operators as
PSPM = DSR(h)—DSE(h=0), but this point of view does not seem
to incorporate the dip bandwidth as well as Rocca’s approach
because it doesn't fully overcome the separability problem. The
reason for a detour through Ic,p -space is to enhance the validity of
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any square root approximations. (If you omit the detour, your
square root expansions get overwhelmed by the main thing that the
DSR wants to do which is to push energy to zero offset.)
Applying (21) to (19) and subsequently dropping quadratics and
higher in k:p we get

——a P
ky = o = Vof-k/a - 5 (22)

Interpretation of the data processing implications will require
further work.



