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9.2 Interval Velocity by Linear Moveout Methods

Linear moveout forms the basis for a simple, graphical method
for finding seismic velocity. The method is particularly attractive
for the analysis of data which is no longer in a computer, but just
exists on a piece of paper. Additionally, the method offers a
number of insights beyond the usual computerized hyperbola scan.
It will help us rid ourselves of the notion that angles should be

measured from the vertical ray. Non-zero Snell parameter can be
the "default’.

Ultimately this method leads to a definition for wvelocity spec-
trum, a plane in which the layout of the data itself tells you the
seismic velocity.

Graphical Method for Interval Velocity Measurement

Consider a point source. The wavefront after a time ¢ is a cir-
cle of radius vt and is given by

vet? = z® 4 2% (1)

Letting f =g—s denote the lateral source-receiver offset and =z

denote the depth to an image source under a horizontal plane layer
we have

ve e = f2+(z—zs):2 (2)

We make our measurements at the earth’s surface where 2z=0.
Differentiating (2) with respect to t we obtain

2 _ af

viet = 25 oL (3)
e - f daf _ [
YUS t At T pt (4)

Figure 1 shows that the three parameters required by (4) to com-
pute the material velocity are readily measured on a common mid-
point gather.

Of course, we can measure some kind of velocity by means of
equation (4) even if the earth does not have the assumed constant
velocity. The question then becomes, what does the measurement
mean? In the case of a stratified medium wv(z) we can quickly
establish the answer to be the familiar RMS, or root-mean-square
velocity. To do so, first note that the bit of energy arriving at the
point of tangency has throughout its entire trip into the earth been
propagating with a constant Snell’s parameter p. The best way to
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FIG. 1. (Gonzalez) A straight line, drawn tangent to hyperbolic
observations. The slope p of the line is arbitrary and it may be
chosen so that the tangency occurs at a place of good signal-to-
noise ratio.

specify velocily in a stratified earth is to give it as some function
v(z). Another way is to pick a Snell's parameter p and start des-
cending into the earth on a ray with this p. As the ray goes into
the earth from the surface z=0 at {=0, the ray would be moving
with a speed of, say, v'(p.t). It is an elementary exercise to com-
pute v'(p,t) from v(z) and vice versa. So, when convenient, we
may refer to the velocity as some function v'(p,t). The horizontal
distance f which a ray will travel in time ¢ is given by the time
integral of the horizontal component of velocity, namely

t

f = [wv'(p.t)sinv dt (5)
0

Replacing sin®¥ by pv and taking the constant p out of the
integral yields

11
f o= p [viat (6)
0
Inserting (6) into (4) we get
t
2 - J _ 1 2
Ymeasured ~ r t—fv dt (7)
p 0
which justifies the assertion that
Ymeasured v'root—mean-square = VYpRus (8)

!

Equation (7) is exact. It does nol involve a
tion or a "'straight ray" assumption.

'small offset” assump-
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Next let us consider the so-called interval velocity. Figure 2

shows hyperboloidal arrivals from two flat layers where a straight
line of slope p has been constructed to have the same slope p.
Then the tangencies are measured to have locations (f,,f;) and

(fotp). Combining (8) with (4), using the subscript i to denote
the i-th tangency (f,.t;), we have

Y
£ 8 = [otar (9)
0

Assume that the velocity between successive events is a constant
Vintervar aRd subtract (9) with i+1 from (9) with i to get

(foe1 = fi) %tL = (bip1 = 8) Yoeroa (10)

f1 f2

FIG. 2. (Gonzalez) Construction of two parallel lines on a common
midpoint gather tangent to reflections from two plane layers.

Solving for the interval velocity we get

5 _ Jiv1—Ji ay
interval — t-_,_l*ti dt (11)

1

v

So the velocity of the material between the i-th and the i+1-
st reflectors can be measured directly by the square root of the
product of the two slopes in (11), which are the dashed and solid
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straight lines in figure 2. 'I'he advantage of manually placing
straight lines on the data, over automated analysis, is that you can
graphically visualize the sensitivity of the measurement to noise,
and you can select the best offsets on the data at which to make
the measurement.

When doing this routinely one quickly discovers that the major
part of the effort is in accurately constructing two lines which are
tangent to the events. When this happens, it is convenient to replot
the data with linear moveout &' =t —pf. After replotting, the
sloped lines have become horizontal so that any of the many timing
lines can be used. Locating tangencies is now a question of finding
the tops of convex events. This is depicted in figure 3.
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1t {t=t—pf

FIG. 3. (Gonzalez) Linear moveout converts the task of identifying
tangencies to constructed parallel lines, into the task of locating
tops of convex events.
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In terms of the time t’, equation (11) becomes

1 1 1 1
‘U'gmterval = A_t ; = At B ; (12)
Af Af

Common Midpoint Snell Coordinates

Common midpoint slanted wave analysis is a more conservative
approach to seismic data analysis than the Snell wave approach.
The advantage of common midpoeint analysis is that the effects of
earth dip tend to show up mainly on the midpoint axis, and the
effect of seismic velocity shows up on the offset axis.

The disadvantage of midpoint analysis is that it is non-physical.
When you do a slant stack at common geophone, you are modeling
a physical situation and you expect to be able to write a differential
equation to describe the stack, no matter what ensues, multiple
reflection or lateral velocity variation. A common midpoint slant
stack does not model anything which is physically realizable. Noth-
ing says that a partial differential equation exists to extrapolate
such a stack. This doesn’t mean that there is necessarily anything
wrong with a common midpoint coordinate system. But it does
make you respect the Snell stack approach even though it has not
made much progress in the industrial world.

(Someone implementing common midpoint slant stack would
immediately notice that it is easier than slant stack on common
geophone data. This is because at a common midpeint, the tops of
hyperboloids must be at zero offset, the location of the Fresnel
zone is predictable and interpolation and missing data problems
are much alleviated.)

Seismic data is collected in time, geophone, shot, and depth
coordinates (f.,g,s,z). We will be defining a new four component
system. First of all, we will want to define midpoint in the usual
way

g +s
2

Next we will want to define a travel-time depth. This will be done by
. using the vertical phase velocity in a borehole. Keeping as much as
possible with conventional notation, we will use the two way travel
time.

y(t.g.s.2) = (13)

(t.g,s,z) = 2z E(LS—F& (14)
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Next we will define the surface offset h’. This will not be the old

definition of offset. We plan to use this coordinate system to down-
ward continue shots and geophones. Instead of thinking of them as
going straight down, we would like to think of them as going down
along the ray. This can be achieved if we define A’ as follows

h'(t,g,s,2) = %+ztanﬂ (15)

With this new definition of hA' we can see that for constant h' the
separation of the shot and geophone decreases with the depth of
downward continuation of the experiment.

Define the LMO time as the travel time in the point source
experiment less the linear moveout. So at any deplth we can com-
pute the LMO time by t —p(g—s). As we defined A’ to be the sur-
face half offset, we will now define t' to be the surface LMO time.
From the LMO time of a buried experiment we find the LMO time at
the surface by adding in the travel time depth.

t' = t —plg —s)+T (18)

You might like to think of this as a slant on the old time retarda-
tion for up coming waves, say t'=t; 0+ (2gen:/ V). Formally we
have

cos®

t'(t,g.s,z) = t—plg—-s)+2z (17)

Figure 4 is a geometrical representation of these concepts.

From the geometry of figure 4 we can deduce that a measure-
ment of a reflection at some particular value of (h'¢’) directly
determines the velocity. Write an equation for the reflector depth
tl

tiph
ot

cos¥ = reflector depth = h (18)
tand

Using Snell's law to eliminate angles and solve for velocity we
immediately get

v? = L 1 (19)
p .t

p ahf

Comparing back to equation (12) we can see that we are on the

track.

Gathering the above definitions into a group, and allowing for
depth variable velocity by replacing z by the integral over 2z, we
have
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FIG. 4. The common midpoint linear moveout geometry.
% cos ¥
t'(¢ z = —s)+2 o A
(t.g9.5.2) -plg —s) { " (20a)
y(tg.sz) = Lg 2 (20b)
_ z
h'(t,g,s,z) = %+ftan19 dz (20c¢)
0
T cos
t = =2 d
7{t,9,s,2) 2{ " z (204)

Before these equations are actually used, all of the tri-

- gonometric functions are eliminated by Snell's law for stratified

media, which says that sin®¥(z) = pwv(z), where Snell's parameter
p is a numerical constant throughout the analysis.

The equation for interval velocity determination (12) again
arises by combining dt'/ dz from (20a) and dh'/dz from (20c)
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di' _  <cosv (21)
dh' v tan®

Fliminating the trig functions with pv = sin®¥ allows us to solve
for the interval velocity.

ve =

dt’ (22)

h !

1
p

Z\)|'-‘ p—

p +

At the earth’s surface 2z = 0, seismic survey data can be put
into the coordinate frame (20) merely by numerical choice of p
and doing the linear moveout. No knowledge of velocity v(z) is
required so far. Then you look at the data for some tops of the
skewed hyperbolas. Finding some, equation (12), (19) or (22) gives
you a velocity which you may use to begin downward continuation.

Waves can be described in either (f,9,s,2z) physical coordi-
nates or the newly defined coordinates (t',y.,h',7). In physical
coordinates we are familiar with the idea that reflectors exist wher-
ever echoes arrive at zero traveltime, namely

t = 0 and g = s (23a,b)

We would like to express these conditions in the Snell coordinates.
Inserting (23) into (20a) and (20d) we get what programmers call
the stopping condition

t = T (4)

This is the depth at which the velocity information should be best
focused in the (h',t')-plane. Next we need some downward con-
tinuation equations.

Differential Fquations and Fourier Transforms

The chain rule for partial differentiation gives

%l |te Yy Py Ty | |% (25)
B¢ t'y Yo h's Tg Op,
624 t’z yZ h",Z TZ ] a'f’J

" In our usual notation, time derivative 8, has the Fourier represen-
tation —tw. Likewise, 9, and the spatial derivatives
(ay,ah.,a.r,ag,as,az) are associaled with i(!cy,lch.,lcT,lcg,ks,kz).
Using these Fourier variables in the vectors of (25) and
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differentiating (20) to find the indicated elements in the matrix of

(25), we have

[ [
—w [ 0 0 . o
k k
g -p 172 1/2 0 Y
ks | 7 P 12 — 12 0 k. (26a,b,c,d)
]CZ M O tanqy M. ij
d ’U 'U J ]

Let S be the sine of the take-off angle at the source and G
be the sine of the emergent angle at the geophone. If velocity v is
known, these angles are directly measurable as stepouts on com-
mon geophone gathers and common shot gathers. Likewise, on a
constant offset section or a slant stack observed stepouts relate to
a sine like quantity Y, and on a linearly moved out common mid-
point gather stepouts measure a sine-like quantity /'. The precise
definitions of these sine-like quantities are given by

S = ws G = af (27a,b)
vk vk, .
v o= S H = 2;‘ (27¢.d)

With these definitions (26b) and (26c) become
G = pv+Y+H = Y+ (H +pv) (28a)
S = —pv+Y~-~-H = Y-—-(H +pv) (28Db)
We see that the familiar offset stepout angle H is related to the
LMO residual stepout angle H' by H'= H—pv. Setting H' equal
to zero means setling k;. equal to zero, indicating integration over

h’, which in turn means slant stacking data with slant angle p.
Small values of H'/v or k;./w refer to stepouts near to p.

Processing Possibilities

The double square root equation is

k - -
= = - LIVITsRe VI TR (29)
w v

3 Using the substitutions (26a,d), and (27a,b) we discover that in the
retarded Snell coordinates the double square root equation
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becomes

br o _pv o 1l @ -vy -2 |
[ , , o 172
LB H ) 4+ Y) }(30)
| — p2y?

Equation (30) is an exact representation of the double square
root equation in whal is called retarded Snell midpoint coordi-
nates.

The coordinate system (20) can describe any wavefield in any
media. It is particularly advantageous only in a stratified media of
velocity near v(z) for rays which are roughly parallel to any ray
with the chosen Snell’s parameter p. There is little reason to use
these coordinates unless they "fit" the wave being studied. Waves
which fit are those which are near our chosen p value. This means
that H’ doesn’t get too big. A variety of simplifying expansions
(30) are possible. There are many permutations of magnitude ine-
qualities among the three ingredients pv, H', and Y. The expan-
sion to use depends upon the circumstances. The appropriate
expansions and production considerations have not yet been fully
delineated. But let us take a look at two possibilities.

First, any data set can be decomposed by stepout into many
data sets each with a narrow bandwidth in stepout space, CMP slant
stacks for example. For any such data set we might ignore H'
altogether. Then (30) reduces to

k_T— - 1_L [1_ b 1/2+ [1_ +2puY + VP i (31a)
w 2 [ 1 _pz,vz I 1 —pzyz a
or

k

T — 1 - _1___ {\/l - (Y_p'zj)z + \/1 — (Y+p’l))2] {Slb)
@ 2\/1 —pzvz

The above approach is similar to the one employed by Richard
Ottolini in his dissertation.

A second possibility is to filter away the portion of the data
which is far from the chosen p, then process the rest of the data
- set at the chosen value of p. Keeping powers up to quadratics in
H' and Y we get

Cr H= + re . (32)
© 2(1 —p™®)  2(1-p*?)
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It is no accident that there are no powers of Y and H' less

than squares. The coordinate system was designed so that energy
near the chosen model Y=0 and H =pv should not drift in the
(h',t")-plane as the downward continuation proceeds.

The velocity spectrum idea of equation (32) is to use the H'
term to focus the data on the (h',t')-plane. After this it should be
possible to read interval velocities directly as slopes connecting
events on the gathers. This apprbaeh was used in the dissertation
of Alfonso Gonzales.

Pre-stack partial migration should have a place here some-
where, but so far it hasn't been worked out.
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