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5.1 Linear Moveout and Snell Waves

Historically, we often regard echo delay as somewhat
synonymous with depth. When it becomes necessary to think about
angles, it is natural that we measure them by their departure from
the vertical ray. Actually, the best seismic data is generally that
recorded at a substantial angle from the vertical. Most of our data
is certainly not from vertical rays. Usually we don’t even record
the data which travels near the vertical ray. In this chapter we
develop a pattern of thinking which is oriented about a selected
non-vertical ray. Rotation of coordinates is not the method of
choice. Rotation would lose the fact that the plane on which we
make our measurements is the plane given by the very simple
equation z = 0. Rotation would also make a mess out of the simple
seismic velocity function v(z) making it a strongly two dimen-
sional function v'(z',2').

In this chapter we will learn the basic concepts of linear
moveout (LMO). This will offer a deeper understanding of offset
than the view presented in Chapter 3. While not fully incorporated
in the modern production environment, this deeper view is of spe-
cial interest to researchers. This view offers better understanding
of velocity estimation. It also offers an understanding of multiple
reflections, a subject untouched in Chapter 3.

Interpretation of Stepout as Snell’s Parameter

A basic seismic measurement is that of siepout. Consider two
geophones separated by a distance Ax which record an echo. One
geophone receives the echo at a time Af later than the other. The
stepout of the echo is defined to be At/ Axz. It has units of inverse
velocity and may be given in units of milliseconds per meter or
seconds per kilometer. Figure 1 depicts a plane wave incident on
the earth's surface. From the geomelry, you can see that the
stepout is a function of the seismic velocity and the angle of the
wave, namely

at 1 _ sin®
dzr horiz. speed at z = 0 v

(1)

We will see that the stepout seen on the surface must equal the
stepout seen at any depth. Think about an airplane flying horizon-
tally above the earth at a constant speed (inverse stepout). The
airplane goes from z = —~ to z = +e. Imagine an earth of plane
horizontal layers. In this model there is nothing to distinguish any
point on the z-axis from any other point on the z-axis. Consider a
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FIG. 1. Wave front arrival at earth’'s surface showing that observa-
tion of dt/dx gives the ratio dt/dx = (sin®)/v.

snapshot (z,z) picture of the wavefronts in the vicinity of the air-
plane. There may be reflections, refractions, and multiples. What-
ever the picture is, it moves along with the airplane. The top of the
picture and the bottom of the picture both move along at the same
rate even if the earth velocity increases with depth. So df/dzr is
a constant function of z.

We have restricted the velocity v(2z) to be a function of depth
only. Such an earth is said to be stratified. In a stratified earth
model the stepout is a most informative measurement. By itself it
doesn't tell us the angle ¥(z) of the rays nor does it tell us the
seismic velocity w(z). But this simple surface measurement does
tell us the ratio (1). And the ratio will be the same at all depths.
The stepout is also called the Snell parameter, because its depth
invariance is basically a statement of Snell’s law. Snell’s parame-
ter, generally denoted p is defined by

p o= ML (2)

We have deduced the fact that the parameter p in equation (2)
does not depend on depth z. The method of deduction is very gen-
eral. It applies to both transmitted rays and reflected rays. It
doesn’t matter if the wave is up-going or down-going, primary or a
multiple, or even if some legs of the journey are by shear waves.

For any ray traveling from a source to a receiver in a stratified
" media, the Snell parameter p is a constant function of time as
well as depth.

The inverse to Snell’'s parameter p is known as the horizontal
phase velocity. For a vertically incident plane wave this velocity is
infinity. Less steep angles have slower velocities. We rarely
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consider anisofropic media (wave speed depending on direction).
In that case df/dzx is constant with depth, but it does not have
the Snell interpretation (1).

Definition of Snell Wave

Consider the wave generated by a moving volume of high pres-
sure such as surrounds the nose of a supersonic jet plane. To get
the wave Lo penetrate into the earth, the airplane speed should
exceed that of the seismic waves in the earth. Unfortunately, this
requirement seems to be unrealistic for cases of practical interest,
but that doesn't detract from the conceptual model. [Actually, for
two-dimensional (x,z) analysis, we would need a line source along
the third dimension ¥ ]. Anyway, in a stratified medium with some
v(z) the airplane initiates a ray at every point along the z-axis.
Each ray has the same Snell parameter. For a constant velocity
medium, the wave is nothing other than a plane wave. In a
stratified medium wv(z) the wavefronts become curved and are no
longer planar. Such wavefronts are so central to applied seismo-
gram analysis in petroleum prospecting that they require a name.
To prevent us from inaccurately referring to these wavefronts as
non-vertically-incident plane waves, 1 propose to call them Snell
waves. A Snell wave is nothing more than a plane wave which
enters a stratified medium and becomes curved. In optics a beam
of light is said to have an "angular spectrum.” We seismologists
worry a lot about the velocity increasing with depth. So instead of
an angular spectrum, we have the "dip spectrum” by which we
really mean the spectrum of Snell parameters.

Lateral Invariance

The nice thing about a vertically incident source of plane waves
P =0 in a horizontally stratified medium is that the ensuing wave
fleld will be laterally invariant. In other words, an observation or a
theory for a wave field would be of the form P(t)xconst{z). Snell
waves for any particular non-zero p value are also laterally invari-
ant. That is, with

t" = t—-px (3a)
' = =z (3b)
lateral invariance is given by the statement

P(zx,t) = P'(t') xconst(z') (4)
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Obviously when an apparently two-dimensional problem can be

reduced to one dimension, great conceptual advantages result, to
say nothing of advantages of sampling and computation. Before
proceeding, study equation (4) until you realize why the wave field
can vary with = but be a constant function of z' when (3b) says
x =zx

You might notice that the coordinate system (3) is a retarded
coordinate system, not a moving coordinate system. Moving coor-
dinate systems work out badly in solid earth geophysics. The velo-
city function is never lime variable in the earth, but it becomes
time variable in a moving coordinate system. This adds a whole
dimension to the computational complexity. We are intending to
solve problems with real data for which the model velocity is a
function of all space dimensions. But we will solve these problems
in a coordinate system which has a reference velocity which is a
function of depth only.

Coordinates for Snell Waves

The Snell wave has three intrinsic planes, which are suggestive
of a coordinate system. First are the layer planes of constant =z
which include the earth surface. Second is the plane of rays. Third
is the plane of the wavefront. The planes become curved when
velocity varies with depth.

The following equations define Snell wave coordinates.

z'(z,x,t) = =z cosdy (5a)
v

z'(z,x,t) = 2z tand + =z (5b)

t'(z,xz,t) = =z cos® _ , sInU 4y (5¢)
v v

Equation (5a) is just a definition of a travel time depth by the
vertical phase velocity seen in a bore hole. Interfaces within the
earth are just planes of constant 2z’

Setting z' defined by equation (5b) equal to a constant, say z
we get an equation for a ray, namely (z—z3)/2 = —tan?.

Different values of r, are different rays.

Setting t' defined by equation (5¢) equal to a constant, we get
the equation for a moving wave front. To see this, set ¢'=1%; and

note that at constant x one sees the borehole speed, and at con-
stant 2z one sees the airplane speed.
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Mathematically, one equation in three unknowns defines a

plane. So if you set the left side of any of the equations (5a,b,c) to
a constant, you have an equation defining a plane in (z,z,t)-space.
To get some practice, let us look at the intersection of two planes.
Staying on a wavefront requires dt' = 0. Using equation (5c) we
have

dt' = 0 = 98V g, _ SINY gy g (6)
v v

Combining the constant wavefront equation df’ = 0 along with the
constant depth equation dz'=dz = 0 we get a familiar relation-
ship

dt
2w - P (7)

When coordinate planes are non-orthogonal, the coordinate sys-
tem is called affine. With affine coordinates, such as these, there
is no problem of computational tractability, but there is often a
human confusion problem. For example in displaying movies of
marine field data, one sees a sequence of (h,t)-planes. Successive
planes are successive shot points. So the data are displayed in
(s,h) while people tend to think in (y,h) or {s,g). With affine
coordinates [ find it easiest to forget about the coordinate axis, and
think about the plane to which it is perpendicular. The shot axis s
can be thought of as a plane of constant geophone, say cg. So I
think of the marine data movie as being in (cs,ch,ct)-space. In
this movie, another plane, really a family of planes, the planes of
constant midpoints ¢y, sweep across the screen, along with the
"texture” of the data.

To define Snell coordinates when the velocity is depth variable,
it is only necessary to interpret (5) carefully. First, all angles must
be expressed in terms of p by the Snell substitution
sin® = pv(z). Then =2z must everywhere be replaced by the
integral with respect to z.

Snell Waves in Fourier Space

The chain rule for partial differentiation says that

[6t ft’t x’t z'y [at'
8, = |t', ', 2', o (8a,b,c)
az t’z x’z z,z az'

In Fourier space, equations (8a) and (8b) may be interpreted as
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10 = —id (9a)

ik, = +pw + ik, (9b)

Of particular interest will be the energy which is flat after linear
moveout (constant with z'). For such energy 8/08z' =1i1k’', = 0.

Combining (9a) and (9b) we get a familiar equation

p = — (10)

Snell Wave Information in Field Data

The superposition principle establishes the idea of creating an
impulse function by a superposition of sinusoids of all frequencies.
A three-dimensional generalization of this idea is the creation of a
point source by means of superposition of plane waves going in all
directions. Likewise, a plane wave can be thought of as a superpo-
sition of many Huygens secondary point sources. A Snell wave can
be simulated by an appropriate superposition, called slant stack, of
conventional exploration data. The simple process of propagation
spreads out a point disturbance to where, from a distance, the
waves appear to be nearly plane waves or Snell waves. Little bits of
real data where the arrivals appear to be planar can be analyzed as
if they were Snell waves.

Looking on profiles and gathers for events of some particular
stepout p amounts to scanning hyperbolic events trying to pick
the places where they are tangent to a straight line of slope p.
The search and the analysis will be facilitated if the data is replot-
ted with linear moveout. That is, energy located at offset f =g —s
and time ¢ in the (f,t)-plane is moved to offset f and time
t'=t—pf in the (f.,t")-plane. This is depicted in figure 2. The
linear moveout converts all events stepping out at a rate p in
(f .t)-space to "horizontal” events in (f ,t')-space. The presence of
horizontal timing lines facilitates search, identification, and meas-
urement of the locations of the events.

Just as waves have a Fourier spectrum, they have a dip (or
stepout) spectrum. A single shot point generates Snell waves for
each value of p. Filtration methods can be used to eliminate all
" but a small bandwidth of waves about some particular p. Start
with data at the ecarth surface 2z = 0. Associate x with the geo-
phone axis, say = g. The Snell transformationis z'=0, z' =0
and ¢'=t—px. Converting the data to the Snell frame just
amounts to applying linear moveout. The components in the data
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divergence correction. In other words, slant stacking takes us

from two dimensions to one, but a ¢!° remains to correct the
conical wavefront of three dimensions to the plane wave of two.

We can sum up by saying that slant stack or dip filtering along
the geophone axis can be used to extract an up-coming Snell wave
component from any upcoming wave field.

Since we can’t find an airplane to go fast enough to make a
salisfactory down-going Snell wave we can consider simulating one
with conventional, point-source data. Basically we must superpose
all the shots with a delay phased to match the speed of the desired
airplane. Actually we do not have line sources out of the plane of
the survey so the wavefronts we would actually simulate would be
conical with the apex of the cone at the moving source. The major
difference between the two cases is like a cylindrical-divergence
amplitude correction. A minor difference predicted by wave theory
would be a short wavelet with a little color and phase shift.

Integration over a time shifted shot axis is a form of dip filter-
ing in (s,t)-space. In summary, a downgoing Snell wave is achieved
by dip filtering in shot space whereas an upcoming Snell wave is
achieved by dip filtering in geophone space.

Muting and Data Recording

The basic goal of muting is to remove horizontally moving
energy. Such energy is unrelated to the earth image we seek. At
the present time most people who record and process data apply a
muting function (a weighting function) which zeros data beyond
some value (approximately) of (g—s)/t. There is no question that
this removes some horizontally moving energy. But more could be
done. Horizontally moving energy can often be found inside the
mute zone. The way to get rid of it is with a dip filter instead of a
weighting function. This couldn’t be done before modern high den-
sity recording because slow moving noises were often aliased on
the geophone cable. Think of the data in terms of the emergent
angle or the Snell parameter df/dg. If the emergent angle isn't
small enough, the waves couldn’t have come from the exploration
target. We would like to apply such dip filtering in shot space as
well as geophone space, bul that won't be so easy in practice.
Don’t fall into the trap of thinking that you should do this dip filter-
ing on a common midpoint gather. That would not reject back-
scattered ground roll because it has no moveout.
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Marine side-scatter is frequently so strong as to be poorly

suppressed by conventional processing. The reason is that out of
plane scatterers often give hyperbolic arrivals, which have steep
dip, hence have sediment rather than water stacking velocities.
What is needed is two dip filters. One to reject waves leaving the
shots at non-penetrating angles, and the other to reject waves
arriving at the geophones at non-penetrating angles. Present day
fleld arrays filter on the basis of spatial frequency. We would be
left with more high frequency energy in our data if we would build
recording equipment which used dip filters instead of spatial fre-
quency filters. The causal dip filters described in an earlier
chapter might work nicely.

Synthesizing the Snell Wave Experiment

Let us synthesize a downgoing Snell wave with field data, then
imagine how the up-coming wave will look and how it carries us
information about the subsurface.

Slant stack will take survey line data P(s,g,t), which is a func-
tion of shot location s, geophone location g, and traveltime ¢,
and sum over the shot dimension synthesizing the upcoming wave
U(g,t) which should have been recorded from a downgoing Snell
wave. [t is remarkable that this is the case even though there may
be lateral velocity variation and multiple reflections. The summa-
tion process is quite confusing because there are three different
kinds of time:

t = traveltime in the point source field experiments.

t = t —p(g —s) is interpretation time. The shal-
lowest reflectors are seen just after £’ = 0.

tpseudo = time in the Snell pseudo-experiment of a moving
source.

Time in the pseudo-experiment in a horizontally layered earth has
the peculiar characteristic that the further you move out the geo-
phone axis, the later the echoes will arrive. So we transform
directly from the field experiment time ¢ to interpretation time
t'" by

t = t'pseudo——px = t—plg —s)
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FIG. 2. (Gonzalez) Linear moveout converts the task of identifying
tangencies to constructed parallel lines, to the task of locating
tops of convex events.

which have Snell parameter near p are now slowly variable along
the z'-axis. To extract them you apply a low-pass filter on the z'-
axis, and do so for each value of £'.

The procedure of slant stacking is first to do linear moveout
with ' =1¢ —pzx, then to sum over z'. In other words, you can
slant stack in either of two ways: 1) sum along slanted lines in
(t,z)-space; or 2) do linear moveout ¢' =% —pz and Lhen sum over
x' at constant t'. In either case, the entire gather P{x,t) gets
converted to a single trace which is a function of ¢’ Let us think
about what this trace actually is. We will assume that the sum over
observed oflsets is an adequate representation of integration over
all offsets. The (slanted) integral over offset will receive its major
contribution from where the path of integration becomes fangent
to the hyperboloidal arrivals. On the other hand, if rays carry a
wavelet with no zero-frequency component, and if the arrival time
curve crosses the integration curve at any fixed angle, then the
contribution to the integral vanishes.

The strength of an arrival depends on the length of the zone of
" tangency. The Fresnel definition of the length of the zone of
tangency is based on a half-wavelength condition. In an earth of
constant velocity (but many flat layers) the width of the tangency
zone would broaden with time as the hyperbolas flatten. This
increase goes as t!/¥, which accounts for half the spherical-
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Figure 3 depicts a downgoing Snell wave.
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FIG. 3. Wavefront of a Snell wave which reflects from two layers
carrying information back up to g,

Figure 4 shows a hypothetical common geophone gather which
could be summed to simulate the Snell wave seen at location g in
figure 3. The lateral offset of B from C is identical in figure 3
with both places in figure 4, Repeating the summation for all geo-
phones we get the synthesized up-coming wave from a down-going
Snell wave.

The variable t' may be referred to as an interpretation coordi-
nate because shallow reflectors are seen just after ¢' = 0, and hor-
izontal beds give echoes which arrive without horizontal stepout,
unlike the pseudo-Snell wave. Tor horizontal beds Lthere is no
detection of lateral location, unless we allow an abrupt lateral
change in reflection coefficient. On figure 3 the information about
the reflection strength at B is actually recorded rightward at C
instead of being scen at A where it would be on conventional
stack. Moving received data to an appropriate lateral location is
thus an additional requirement for full interpretation.

Figure 5 shows the same two flat layers as figures 3 and 4, but
additionally there are anomalous reflection coefficients at the
points A, B, and C. Point A is directly above B. The path of
the wave reflected at # leads directly to € and thence to gj.
Subsequent frames show the diffraction hyperbolas associated with
" these three points. Notice that the pseudo-Snell waves reflecting
from the flat layers step out at a rate p. Hyperbolas from the
scatters A, B, and C come tangent to the Snell waves at points
a, b, and c. Notice that & and c lie directly under g, because
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FIG. 4. (Gonzalez) Left shows a common geophone gather at g

over two flat reflectors. Center shows the data shifted by linear
moveout in preparation for generation of the synthetic Snell wave
by summation over shots. Right shows the Snell wave trace
recorded at geophone g,. A Snell Wave seismic section consists of

many side-by-side traces like g.

all are aligned by a ray path with Snell parameter p. The points
A, B, and (C locate the tops of the hyperbolas since the earliest
arrival must be directly above the point scatterer, no matter what
the incident wave field. Converting to the interpretation coordi-
nate %' in the next frame offers the major advantage that arrivals
from horizontal layers become horizontal. But the hyperboloids
have become skewed. Limiting our attention to the arrivals with
little stepout we see that our information about the anoralous
reflection coefficients is found entirely in the vicinities of a, b,
and ¢, which originally lay on hyperbola flanks. These points do
not have the correct geometrical location, namely that of A4, B
- and €, until we laterally shift information to the left, say
g'=g —f (). Then a lies above b. The correct amount of shift
f (') is a subject relating to to velocity analysis. The next section
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FIG. 5. (Gonzalez) Top left is three point scatterers on two
reflectors. Top right is the expected Snell wave. Bottom left is the
~Snell wave after linear moveout. Bottom right is after transform to
- full interpretation coordinates. At last a, b, and ¢ are located
where A, B, and C began.
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works out the velocity analysis.

EXERCISES

1. Equation (5) is for up-going Snell waves. What coordinate sys-
tem would be appropriate for down-going Snell waves?
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