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Maximum-~likelihood Q estimation

Dave Hale

Abstract

Assuming a noise-free, autoregressive, non-stationary model, the maximum-likelihood
estimate of § may be computed from a single seismogram, using an iterative algorithm similar
to the prediction-error algorithm described in SEP-30 (Hale, 1982). The only difference in
the two algorithms is that the maximum-likelihood algorithm is sensitive to the time-varying
amplitude as well as color of a seismogram, whereas the prediction-error algorithm is sensi-

tive to color variations only.

Maximum-likelihood estimation of § for a seismogram contaminated with ambient noise
is more difficult. The maximum-likelihood formulation of the estimation problem leads to a set
of equations which is highly non-linear in the unknown parameters, including ¢; and no rea-

sonably efficient algorithm has yet been found which solves this estimation problem.
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Introduction

In SEP-30 (Hale, 1982), | described a method for deconvolving attenuated seismo-
grams. | called this method "Q-adaptive deconvolution” (QAD) to distinguish it from more
conventional adaptive or time-varying deconvolutions. The latter methods typically assume
no mode! for the time-varying color of seismograms, whereas QAD is based on a model which
attritutes this non-stationarity io inelastic actenuation. lis addition to estimating autore-
gressive (AR) coefficients, as in conventional predictive deconvolution, QAD estimates the

quality factor @.

The criterion used by QAD to estimate @ and AR coefficients is that of minimizing a sum
of squared prediction errors, the same criterion used in predictive deconvolution. In this
paper, | describe an algorithm for computing the maximum-likelihood (ML) estimate of @ from
a noise-free seismogram; and | compare this estimator with the least-squares algorithm
described in SEP-30. The ML algorithm is derived assuming a Gaussian distribution for
reflection coefficients, but experience with synthetic examples has shown that it yields
good estimates even when this assumption is not satisfied. In practice, the poorer assump-
tion is that of a noiseless seismogram. In the last section of the paper, | describe a ML esti-

mator for noisy seismograms, and discuss some of its computational aspects.

The likelihood function for a noise~-free model

Let us first assume that a seismogram may be represented by the following linear

model:
y = FQDr (1)

y denotes the Nx1 column vector y = (y, ¥y, - - - yy)’, where y, is the t'th sample of a
noise-free seismogram. r denotes an N X1 column vector containing the sampled response
of a stratified, non-attenuating earth to an impulsive plane wave. Neglecting multiple reflec-
tions and transmission losses, r is a vector of reflection coefficients. Multiplication by the
NxN ”dive‘rgence” matrix D converts this plane wave response to a point source response.
For a constant velocity earth, the elements of D are D, = §,_,/ £. Multiplication by the
NxN "attenuation” matrix Q converts the response of a non-attenuating earth to that of an
attenuating earth. The elements of Q depend only on the quality factor § or, equivalently,
@~!. Fis an NxN Toeplitz matrix with coefficients of the source waveform f, on its diago-
nals; Fys = f;_4. | use the term "source waveform' loosely to include near surface rever-
berations at source and receiver locations, as well as distortions introduced by recording

instruments. Multiplication by F is equivalent to convolution with this composite source
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waveform.

Assuming that the reflection coefficients are independently and normally distributed

with constant variance Uf and zero mean, the probability density function (PDF) of r is

_Xr
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Using the model of equation (1), the PDF of the seismogram vy is
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where |FQD| denotes the determinant of the matrix FQD. The PDF of y depends on the
unknown orz, !, and source waveform, and is called the likelihood function of these unk-
nown parameters. Our goal in ML estimation is to find the PDF which is most likely to yield a
given seismogram y. Define f to be a vector containing the source waveform coefficients;
f=(fof1 - fiy) The ML estimates of g2, @ !, and f are those values for which the

likelihood function py(y;af,Q_l,f) attains its maximum.

Defining E = D7), P = Q7}, and A = F~! so that r = EPAy, the likelihood function may be

rewritten as

1 TATPTRT
- y AP/ K EPAy
- EPA 2g?
PY(V;UTE,Q laa) = _I'—L_e or (3)

(27].07?)]\//2

Instead of estimating the source waveform f, we estimate its inverse a. To simplify the esti-
mation of a, we should assume that a is causal, which is equivalent to assuming that f is
minimum-phase. This assumption is justified by the fact that the likelihood function of equa-
tion (2) is independent of the phase of f; so we may as well choose the phase which is most
convenient. Even with this assumption, equation (3) implies that a and a.,? cannot be
uniquely determined since multiplication of both by a scale factor leaves the likelihood func-
tion unchanged. We may remove this ambiquity by constraining the first coefficient of a to
be unity; i.e, a=(1a; a; -+ a,). Inthe next section, | describe an algorithm for deter-

mining the parameters ¢?, @ !, and a which maximize py(y;c2,Q1,a).
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Parameter estimation and deconvolution

The problem of maximizing the likelihood py(y;c?,@ !,a) of equation (3) is equivalent to
that of minimizing L(o?,@ 1,a) defined by
L(o2,Q @) = —2Inpyly;c},@',a) (4
TATPTET
- YAPEEPAY | NIng? — 2In |EPA| + constant

of

T
= rzr + NIng? —2In|E| — 2In}P| —2In |A] + constant

r

Remember that r = EPAy is a function of @', a, and y. The determinant of E does not
depend on the unknown parameters, so it may be treated as constant. And the assumption

thata=(1a, - aq,)resultsin |[A] = 1.

The only determinant which depends on the parameters is that of P which depends on
@7'. In SEP-30, | showed that

T
i

| + 7Q7ITG + ;—an‘szGz o (5)
L

Y —niQITiE

j=07"

where T is an VXN diagonal matrix with elements 7,, = {J; _,, and G is an Nx/N Toeplitz

matrix with elements G, = g;_¢ given by

174 , t=0
gt = '—2/(ﬂ1)2 ’ t = 1#L5""
0 , ofherwise

Note that P is lower triangular with diagonal elements F;, = exp(nt/4§). The determinant
of P is the product of the elements on the diagonal so that L(¢?,§ !,a) of equation (4) may

be written as

Tr N Tt
L(of,@7a) = ——+ NIng? —2iIn][e*®
o t=1
T
rir NN+1D)m
= + Nihg? — —————
of " 4Q

where | have dropped the constant terms.

Differentiating L with respect to each of the unknown parameters, one finds that the

ML estimates must satisfy the following equations:
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-~ rr
0 = O‘,? - T (6a)
% N(N+1)rg?
0 = rT 6[‘_ —_ r (Sb)
g 8
0o=#2_ ; k=12 (6¢)
3

where 7 is the estimate of r obtained by using the ML estimates of @ ! and ain deconvolving
the seismogram y. or/ 8Q~! should be interpreted as 8r/ 39! evaluated at the ML esti-

mates (37,67 1,a). A similar interpretation applies to ¢/ da,.

Equations (6) may be simplified somewhat by using equation (6a) to eliminate 8,? in

equation (6b), yielding

= | o7 _ (N+1)7r:_;]

0 =7 7
YR 3 (7a)
0 =?T6‘1" i k=12, ,a (7b)
&

Unfortunately, because ¥ is a non-linear function of @ !, these equations are non-linear in
the parameters @ ! and a. Hence, their simultaneous solution must be found iteratively.
Notice, however, that equation (7b) is linear in the unknown a and is, in fact, exactly that
which we solve in conventional unit-lag predictive deconvolution, where we assume ! = 0.

This linearity greatly simplifies the iterative solution of equations (7).

In general, time-variable filters do not commute. To a good approximation, however, the
matrices E, P, and A do commute. Correction for spherical divergence (multiplication by E),
for example, is commonly performed prior to predictive deconvolution (multiplication by A).

We therefore assume r = EPAy ~ APEy, and compute Ey prior to estimating ! and a.

Assuming that we have a guess for § !, we can compute PEy and then solve equations
(7b) for a using the standard predictive deconvolution algorithm. However, unless our guess
of 7! was very good, equation (7a) will not be satisfied, sc we must perturb the estimate
5‘1 by an amount proportional to the size of the right-hand-side of equation (7a). The itera-
tive algorithm is discussed further in SEP-30 (Hale, 1982) and is given below using the

notation of this paper:
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Initially é*l = guess

M compute PEy

(2) compute a and T from PEy to satisfy equations (7b)
(3) compute A, a perturbation to é”l

(4) 7' = @' -4

(8) if |A] > small goto (1)

Converged T is the deconvolved seismogram

A is computed using equation (7a) and Newton's method to be

?T{ 6? _(N+1)TT:_:]

A 997 i
S OOF O o 0% (N+Dm oy OF
8Q7' 8Q7! a(Q@™1? 4 8@

, Frer - WD prg

(8)
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~
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where the last approximation follows from keeping only the first term in the denominator.
Although including the second and third terms should improve the convergence rate of the
algorithm, { have not found the expense of computing these terms worthwhile. | have also
approximated the derivative of r as 8r/ 8@~ ! ® nTGr. From equation (5), this approximation
is valid insofar as TG & GT. Although not absolutely necessary, this approximation is desir-
able because it permits A to be expressed in terms of the deconvolved seismogram estimate

T, which we have already computed in step (2) of the above algorithm.

The algorithm iterates until A & 0, that is, until equation (7a) is satisfied. Remember
that equation {7b), the predictive deconvolution equation, is satisfied at each iteration. The
only difference between the ML algorithm and the prediction-error algorithm of SEP-30 is in
the computation of A. In the notation of this paper, the latter algorithm computes A accord-

ing to

1 TG — val)F
7 [T(G — YaDT])T[T(G - Yal)r]

A = (9)

Close comparison of the numerators of equations (8) and (9) reveals that the ML and

prediction-error algorithms wili converge to the same estimates if

PN W+1) &~
Zt'f'tz = ‘_E’—Zth
t=1 t=1
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This equation depends only on the amplitude of the r;, hot the color. And the equation is
quite reasonable, for taking expectations of both sides yields
N N(N+1)
et = of —
t=1
which is certainly true. The presence of the amplitude terms in equation (8) implies that the

ML algorithm estimates @~ ! from temporal variations in amplitude as well as color.

The likelihood function for a noisy model

My motive for deriving a ML estimator for § was not merely to show the similarity
between prediction-error and ML estimates, but rather to find an "optimal”’ £ estimation
algorithm for noisy seismograms. Unfortunately, ML estimation becomes much more compli-

cated when ambient noise is introduced into the model as in
zZ=y+n
where
y = FQDr
as before, and the ambient noise n is given by
n = Cw

| assume that w is white noise, normally distributed with covariance matrix GE,I, and that C is
a Toeplitz matrix with elements C;;, = ¢; .c=(1 ¢, ¢z '+ ¢) is a filter which colors the
white noise w, and is assumed to be unknown. |f one expects to have sharp peaks in the
noise spectrum, as is the case, for example, with 60 Hz "cuitural” noise, then an autoregres-
sive model for the noise would be preferred. For definiteness, we assume the moving aver-

age model above.

Without the presence of the non-Toeplitz matrices D and Q in this model, we would
have no hopa of distinguishing between signhal and noise from & singie seismogram. The

non-stationarity of a seismogram gives us a clue as to what is signal and what is noise.

The PDF of z is

1 - %—va—lz
(21T)N/2 W I 1/2 €

pz(z;afso--p_%sQ—ltfac) =

where the dependence on the unknown parameters is buried in the covariance matrix V of z

given by
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v = Fapg?p’Q’F’ + cofc’
The ML estimates of the parameters may, in principle, be found by minimizing

L(U;—zya'l,%sQﬁleac) = —ZInPZ(Z;UE,Uﬁ,,Q_l,f,C)

I

= In|v] +2Tviz

In practice, however, the minimization of [ is made difficult by the fact that no simple
expression exists for |V| and V7! in terms of the parameters. Going through the matrix
calculus, the partial derivative of L with respect to an unknown parameter, say «, is

oL oV

[
Fyule T"racel[V‘l - \I“zzTV"] o

——

The ML estimates are found by setting this derivative to zero for each of the unknown

parameters and then solving the resulting set of non-linear equations.

The solution of these equations must, as in the noise-free case, be obtained by itera-
tion. Now, however, none of the equations appears to be linear in the unknowns; and we
cannot easily eliminate any of the equations as we did, for example, equation (6a). | have
not found an iterative algorithm which makes the minimization of I any easier than, say, the
method of steepest descent; and computation of the gradient of L for even one iteration of
steepest descent is expensive. Furthermore, the cost remains high even if one is willing to

assume knowledge of some of the unknown parameters.

One way to simplify the problem is to assume that all of the matrices which make up the
covariance V commute with each other. This approximation is justifiable for typical earth
values of ! and short f and ¢; and it permits the determinant of V to be expressed analyt-
ically in terms of of, 0%, and @ !, which in turn greatly simplifies the computation of the gra-
dient of /.. The details will be left to a later report in which, optimistically, a more complete

discussion of the noisy case will be possible.

Conclusions

For a noise-free seismogram, the ML estimation of autoregressive coefficients and ¢ is
easily accomplished using an iterative algorithm which closely resembles that discussed in
SEP-30 (Hale, 1982). ML estimation of these parameters for noise-contaminated séismo-
grams appears to be more difficult and a numerical algorithm has, to my knowledge, not yet

been developed to solve this particular problem.
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