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To Understand Diffractions

Boris Zavalishin

Diffracted wave theory in seismic prospecting gradually draws more attention as it
becomes clear, that diffracted waves contain useful information about both geometrical con-
struction and physical properties of seismic boundaries. Yet, from the point of view of a
conventional data processing scheme, where stacking of CMP gathers is an essential ele-
ment, diffractions are considered as something confusing. We start to think about diffrac-
tions only when the stacking procedure fails to suppress them completely. The stacking
process suppresses diffractions in many cases rather effectively because of R.M.S. veloci-

ties differences. In such cases we lose useful information.

There are several reasons for diffractions to be neglected during data processing and
interpretation. One of them is the complicated physical nature of diffracted waves and as a
consequence of this the complicated mathematical description of the phenomena or time
consuming programs for its computer simulation. That is why, though there are plenty of
books and papers on the subject, one of them (Trorey, 1970) is to be considered very
important because it makes you think, that diffraction is not as complicated as is commonly
believed. Only simple ideas and simple theories can actually work in spheres, where big
group of people are involved, and seismic interpretation is such a sphere. So simplification

of diffraction theory is an important aim of applied seismology.

On the present level of its development, applied seismology studies diffractions as
some additional term to the ray- tracing theory of wave propagation. This term is extracted
from a solution of the scalar wave equation. But as the scalar wave equation presents
rather rough approximation to the real case of elasticity it is unreasonable to use its most
sophisticated solutions, when they are complicated or expensive. Reasonably approximated

solutions may help a lot.
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Mod{eling of seismic events is a subject, where consideration of diffractions is desirable
in the fist place. Now modeling is a part of interpretation and it's becoming more and more
popular and useful. But in most cases modeling is based on a ray-tracing technique and can
not implement diffractions even when they are badly needed, in the case of a fault for
example, to say nothing about cases when physical properties are changed or layers are
bent. It is not because of absence of proper modeling programs but because of their high

costs.

Modeling of diffractions is expensive because numerical evaluation of surface integrals
is involved. Trorey's approach enables one to replace expensive integration by much
cheaper convolution, in cases when under-integral expression can be presented analytically
in an explicit form. It opens a way for inexpensive modeling of diffractions in some special
cases (Trorey, 1977; Berryhill, 1977; Hilterman, 1975, 1982). But the number of cases,
where this approach is valid, is limited: straight diffracting edge perpendicular or parallel to
a shot-receiver line. Twelve years since the original publication (1970) have not seen any

other solution. Obtaining an explicit expression for other cases is a problem.

So, all known analytical solutions of the diffraction problem are limited to a few special
cases and this restrains study and use of diffracted waves in seismic interpretation. In this
situation it may be useful to recollect that the Fresnel approach has been enabling solution
of some diffraction problems on the physical level. Furthermore, these solutions proved to be
rather good approximations to sophisticated mathematical solutions found later. In this
paper we shall try to explain some results, which can be achieved on mathematical level,
from the physical point of view. It may lead to further simplifications in understanding of dif-

fractions and expansion of their use for modeling and interpretation.

Trorey's (1970) approach permits no simple physical explanation of the phenomena
because his solution contains a singularity at the front of the diffracted pulse. To overcome

this problem we suggest using in the solution the step-function
s(t) = [ 6(t) dt (1

instead of delta-function §(¢).

To recall the whole the problem, figure 1 was adapted from Trorey's paper.
An absolutely reflecting half-plane ¢ is to the right from AC, the source and the receiver are

at: . Kirchhoff's solution of this diffraction problem is represented by the integral
w n/2
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FIG. 1. Geometry of the diffraction probiem.

where v is velocity, f (f) is a wave-form in the source. To integrate over { we substitute
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Choosing f (t) = s(¢) = 1 and substituting limits inside brackets in Equation (3), we get

n/2
dé
pp(t) = 2";{ - (4)

SEP-32



Zavalishin 140 To Understand Diffractions

6 - L

z
= t tg 6
211'2[ ZEt 22 0 g[ P ]J

Expression (4) is the diffraction response to the unit step-function. As it must be
expected, derivative of (4) over ¢ gives Trorey's (1970) result. Using the same definitions:
T, is the two-way time from the origin to point B (Figure 1 ), T is the two-way time from P
to P, 8= arctg(\/z‘?-—_'rz/ T, ), we get

dpp(t) 2z T,
dt miuR(t? + 18 - VIR - 1°

(5)

(Reflection coefficient K in our consideration is equal 1.)

For seismic applications both diffraction responses (4) and (5) are to be convolved

with certain pulses. According to the common rule

df (£) , _ dg(¢)
di gty =r)» =5

we get the same result convolving Equation (&) with an arbitrary function f (¢) or equation
(4) with its derivative df (£)/dt. Theoretically both solutions are identical, but computa-
tionally equation (4) is preferable. Being free from singularities it provides very cheap cal-

culations in time domain without special precautions ( Hilterman, 1982).

Another advantage of the solution (Equation (4)) is that it enables a sort of physical
interpretation. When { <7 the wavefront has not yet reached the diffractor's edge and the
diffraction's response is equal to zero. At the moment { = 7 the wavefront is tangent to the
diffractor's edge and the solution is still equal to zero because the radiating area is zero.
From this moment on a radiating area within the reflector increases proportionally to £, all
points of it radiate step-function-like waves, which are summed up at P. So diffraction

response must increase with time. This is exactly what the solution (4) shows.

Now we try to solve the same problem for nonzero separation of source and receiver.
We'll show how to do it without any analytical derivations (Fig.2). Let the source be at S
and the receiver at A . The horizontal reflecting plane P terminates at D . S°DA is the
straight line between the image source and the receiver A . We know, that the effective
area of reflection for an infinite plane reflector is an ellipse (Zavalishin,1975).

In the case of the receiver A exactly a half of this ellipse is within the reflecting part of P
to the right from D . On this ground we understand, that the wave field at A is exactly a half
of the field, which infinite plane P would reflect into this point. It is also known

(Trorey,1970), that we get the same result, if we place the screen P4,which terminates at
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FIG. 2. Geometry of diffraction problem for nonzero source-receiver separation.

D, between S’ and A perpendicularly to S°A4. It can be proved by the solution (4). By this
example we state, that there is no necessity to solve the new diffraction problem, which is
much more complicated (Trorey,1977; Berryhill,L1977), because this solution must be identi-
cal to that of of the simpler and already known case. Mathematically this proposition may be
described as follows. If we try to solve the problem in P-plane we shall come to elliptical
integrals, which are not expressed in elementary functions. We transform coordinates so
that P becomes P,. For this geometry we already have the solution (4). It is logical to sup-

pose that the same similarity must exist and for other receivers.

To get the solution for the receiver B the plane Py will serve the purpose. Py is per-
pendicular to S°B at the point 0. To terminate Py at D’ we draw the ellipse passing through
D with focuses at S’ and B. Then we are sure that S'D+DBE=S’D’+D’B and
z=0D'=V(S'D+DBY¥-5'B*/2, so we can evaluate (4) with z=S’B/2, z=0D". In
example shown on Fig.3 : 2=622m, x=48m., SS’=1000m, 0’'D=200m, SB=300m. To

make sure that the result is correct we calculated the field at B also by Kirchhoff algorithm
(2) with the grid on P.
The diffraction response, calculated by (4) was convolved with the time derivative of the

wave-pulse, used in Kirchhoff's algorithm calculations. Dimension of the grid was 2.6 x 2.5
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FIG. 3. Diffractions on P and Py - planes are the same.

m, so the noisy tail of the pulse is the result of spatial sampling of the data. To show pulses
calculated by (4) and Kirchhoff algorithm on the same graph (Fig.3) we shifted one of them
by one millisecond, otherwise they are undistinguishable. That allows us to say, that a sim-
ple solution of the diffraction problem for a horizontal half- plane is found for a nonzero

source-receiver separation.

To be particular, it is advisable to mention that instead of straight-forward Kirchhoff
algorithm we first tried to use Trorey's algorithm in the time domain, using centroid sampling
(Hilterman,1982) and other technigues to override the problem of singularity. Nothing worked

properly. Accuracy in this case depends on the sampling technique.

The property of similarity of diffraction we have shown here may help in solving more
complicated diffraction problems in the time domain (it means - very cheaply) by using
simpler solutions. We illustrate this approach by another example - dipping absolutely
reflecting terminated plane. To solve this problem by using the similarity property of diffrac-
tion we need to know the solution for the case, when the source and receiver do not coin-
cide but are on the same axes perpendicular to the reflecting plane. It's the case, for exam-
ple, when the source is in S (Fig.1) and the recelver is in P. It is easy to show, that the
solution in elementary functions, similar to (4), is not attainable as it is a case of an elliptical
integral. So we try to get an appropriate approximate solution by discussing the solution (4).

The following part of the paper is devoted to this purpose.
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According to Fresnel, a diffraction response depends not only upon the radiating area
but also upon angles between source-diffractor and receiver-diffractor. For the zero
separation between the source and the geophone these angles coincide and can be meas-
ured by the relation between 2 and K. This dependence is clearly seen in the solution (4)
but it is not simple. Both @ and the second term of the equation (4) depends on the angle

between z and K. Trying to simplify it, we rewrite Equation (4) in the form
]
1 x g x
= — = 1 - =
it = sifo-2v) = 21 - 2 5 (42)

where ¥ is the angle between K and ¢
Conditionally we divide this formula into three parts. (1)Multiplier 1/ 22z represents

divergence and needs no discussions. (2)Muitiplier @/ i is the relation between circumfer-
ences of the arc within the diffracting half-plane and the full circle of the R radius (Fig.1).
(3)Multiplier inside the brackets is the function of the source - receiver to the diffractor
angles. Some previous experience shows that solutions of different diffraction problems
consist of these three parts. The first two of them are always the same and create no prob-
lems in their physical explanation and estimation. The third one is the angle's function. To
demonstrate our understanding of the problem let us consider an example. We change the
geometry of our diffraction model in such a way that ¥=8z/ K . It's the case, when AC

(Fig.1) is no longer the straight line but the circle arc of radius z. We get from (4a)

go'p(t) = 21z k—2 (6)

If 6=r this formula represents the known solution (Zavalishin,1981; Hilterman,1982) of the
diffraction problem for a circle. & in this case does not depend upon ¢ and (8) is the ampli-
tude of the step-function. The angle's function is very simple here, it is just
costa = 2%/ K* .

It is interesting, that the solution (4),(4a) for the straight diffracting edge (Fig.1) can
be approximately represented in as simple form as the solution (6) for a circle. We replace

angles inside the brackets in formula (4a) by their tangents and get the formula

& z?

272 KR '

(7)

po N

which looks exactly like (6). The difference is that here 8=arctg (Vi -7/ 7,) depends upon
t. As angle's function 22/ K? in (7) does not depend upon f we expect, that approximate
solution (7) is bigger than the accurate solution (4a), and we suggest to check two more

approximations
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, (8)

which is smaller than (4a) and

(9)

which is the geometric mean of (7) and (8).

Another approximate solution we get by replacing the angles inside the brackets of

(4a) with their sines

XTIl -k (10)

We compared these four approximations with the accurate solution (4a) for variety of
z and z (Fig.1) and found that they are more sensitive to 2z than to z. In three exampies
shown on Fig.4 x = constont = 100m and z = 1000m for a, 2z = 500m for b and
z = B0m for ¢ . The left parts of Fig.4 represent diffraction responses, calculated by for-
mulas: 1 - (4a), 2 - (7), 3 -(8), 4 - (9), 5 - (10). In the right parts of Fig.4 these responses
are convolved with the same seismic pulse. This example shows, that difference between
the exact and approximate solutions is distinguishable only very near to the diffracting edge

and it is small to be taken into consideration in most practical applications.

For further application we chose the simplest approximation, represented by the for-
mula (7). The angle's function here is cos®a (Fig.1) and it allows us to think, that in the case
of separated source S and receiver P this function should look like a product of two

cosines. If 0P =2, and 0S5 =z, , we can easily write the formula

a Z, 23
TT[21+22] KN

Yg N an

which is the approximate solution for separated S and P. Here 8 = arccos x/ R and R is

the root of the equation

t__\/zlz+1?2 + zf + R?

and equal
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FIG. 6. Accurate (2) and approximate (11) solutions are practically identical.

Fig.5 represents comparison of the solution (11) with Kirchhoff grid solution for:
z=100m, z,=800m,, 2,=600m. As they coincide very tightly, we think that one more sim-
ple solution is found. Using (11) and the property of diffraction's similarity, which was
described in the previous part, we can easily calculate the diffraction from an edge of a dip-
ping terminated reflector, when the edge is perpendicular to the line between the source

and the receiver.

Simplicity of physical grounds, which support the approximate solutions shown here,
and high accuracy of approximations allow one to believe, that similar approach may help in
solving other diffraction problems cheaply and accurately enough for today's interpretation

purposes.
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