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An analysis of stable extrapolation operators with
absorbing boundaries

Daniel Rothman and Jeff Thorson

Abstract

The range of stable boundary conditions for finite difference wave extrapolation are
defined analytically for any degree of approximation of the exact paraxial wave equation,
given constant velocity. Eigenvalues and eigenvectors of stable extrapolation operators
are presented, along with a numerical study of reflection coefficients arising from imper-

fectly absorbing boundaries.

Introduction

Finite difference migration or modeling requires the specification of boundary conditions
at the sides of the computational grid. The familiar zero-slope (Neumann) or zero-value (Diri-
chlet) end conditions unfortunately result in artificial side boundary reflections when waves
are incident at the boundary. Consequently, absorbing boundary conditions were developed
which attenuate or virtually eliminate these reflections (Clayton and Engquist, 1980; Toldi
and Hale, 1982).

Stability of the wave extrapolation operator remains a necessity with the inclusion of
absorbing boundary conditions. Clayton and Engquist (1980) proved that stability exists
with the 15 degree approximation of the paraxial wave equation and the use of a particular
form for absorbing boundaries. A relatively simple algebraic proof is presented here that
establishes the range of stable boundary conditions with any degree of approximation of the
exact paraxial wave equation, in a medium of constant velocity. Stability is proven through
an analysis of the eigenvalues of the extrapolation operator, and computed eigenvalues and

eigenvectors of operators with reflecting and absorbing boundaries are illustrated.
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Rothman and Thorson 106 Stable extrapolation operators

Absorbing boundary conditions may still reflect waves; the strength of the reflection
depends, in general, upon the incident angle of the wave at the boundary. This paper illus-
trates the reflection coefficients of side boundaries, which have been empirically determined

as a function of incident angle for reflecting and absorbing boundary conditions.

Review

The scalar wave equation for the downward extrapolation of a wavefield qis
—- = ik,q = -Rgq 1)
where R takes the form (for constant w and v)
—z
— = 4% _2lz
q,kz = 'Lv -\/1 v wz .

Our concern is with the stability of differential equation (1); that is, we desire that its solu-

tion q, = e“quo does not grow with increasing z. Clearly this depends upon the eigen-
values A(R) of R. Stability will hold if Re{X(R)! = 0. Our form of extrapolation, of course, is
performed with difference equations, not differential equations. Going to the discrete
domain does not change the conditions for stability, however, as the same limitations must
still be placed on the eigenvalues of R (Godfrey et al, 1979). Since our primary interest lies
with these eigenvalues, we will explicitly define the eigenvalues of the matrix components
of R.

R is conveniently expressed as R = V MV ~!’% where M is a continued fraction

containing matrices D;, V, and T,

M = Dt + LR (2)
VTV
2D, +
ZD + _ﬂ__.
¢t 2D, + -
D; is a time derivative operator, D; = (¢ + iw)l, where | is the identity matrix and £ =0

and real. V = vgl, vy being the constant velocity of the medium. T is a second spatial
derivative operator. Following Thorson (1978), we can add a complex perturbation p to the
upper left and lower right corner elements of the differencing matrix to represent the inclu-
sion of absorbing boundary conditions. The zero slope condition is then p = 0, and the zero
value condition is p = 1. T is therefore defined as
[(1+p) -1 ]
—1 2 —
1 .
Ax?

12 -1
-1 (1+p)
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Note that truncating M in equation (2) before the third VTV leads to the 45° extrapo-
lation equation, while its infinite continuation represents the 90° equation. We will define a
range of stable absorbing boundary conditions (stable values of p) for the infinite continua-

tion of M; thus, for the exact paraxial wave equation.

Two fundamental observations

Before stating the stability proof we make two observations from elementary linear

algebra.

Observation 1. If a matrix A exists such that Re{x”Ax] > 0 for any vector z, then

Re{A(A)} = O (superscript H denotes conjugate transpose).

Proof. Since x is arbitrary, let it be an eigenvector of A. Then
Re{x?Ax] = Re{x#ax} = Rei{xxA} = 0.

Re{A(A)} = O for the equation to hold, therefore the observation is proven.

Observation 2. If N is a normal matrix (normal matrices are those matrices that com-
mute with their conjugate transpose, so that N¥N = NN¥) and Re{A(N)}= 0, then

Re{x”Nx} = O for any x.

Proof. Since N is normal, it possesses a linearly independent set of orthonormal eigen-

vectors x;, and any arbitrary x can be written as the linear combination ¢ ;x; + ... + ¢, X,.
Then
Nx = c,Ax;, + ... +tc Ax,
Z oMKt e ALK, .

Orthonormality of the eigenvectors x; means that

Thus we have
Re{x#Nx] = Ref (cUxf + ... + i) (c A ffx; + ... + cyAx)) )
= Reflc |?Ar + .. .+ |on |PAn)

Therefore, if Re{A(N)] = 0, then Re{x"Nx] = O for any x.
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The stability proof

We rewrite equation (2) as suggested by Francis Muir in a recent lecture to the SEP,

L, 1

M = —+ (3)
2 L, + 1
Ly + —
UL+
L, : . : ,
where L, = 2D, and L . Since stability depends directly on the eigenvalues of R,
2 ¢ L7 VTV

we will first establish bounds for the eigenvalues of M, and A(R) will then be obtainable

directly.

The eigenvalues of M can be determined from the eigenvalues of L; and L, by simply
replacing the matrices in equation (3) with their respective eigenvalues. This is an allowable
substitution because (1) the matrices L, and L; share the same set of eigenvectors, and (2)
L, and L, are diagonalizable. The former condition is immediately apparent; L, is just a (com-
plex) constant times 1, and therefore it shares eigenvectors with all matrices of equal
dimensions. Condition (2) does not come quite so easily. L, is already diagonal, but L, must
contain a full set of linearly independent eigenvectors. This will be assumed. (L, is
diagonalizable for p = 0. Since p represents only a small perturbation of L; the assumption

is valid).

We want that Re{A(M)] = O, since this will imply the stability of R. This will be true if
the eigenvalues of L, and L, are (semi-) positive real, since the reciprocals of positive real
numbers are positive real, and the sum of positive reals is positive real. Since L; is positive
real by definition (¢ = 0), all that remains to establish are the limitations on p such that the

eigenvalues of L, have positive real parts.

T can be decomposed such that T = A1 5 (T, + P) (Thorson, 1979),
T
[1 -1 ] !
-1 2 -1
Ty = * . , P = Zeros
-1 2 -1
-1 1 P

This decomposition allows us to exploit two characteristics of Ty and P. Both are normal
matrices, and Re{MTy)} = O'. Let us assume also that Re{p} = O, providing that
RefA(P)] = 0. Then, by Observation 2, Re{x”T;x} = 0 and Re{x¥Pxj = 0, and by

T The eigenvalues of To can be found in many linear algebra texts, but Gershgorin's theorem (Strang, 1980) pro-
vides the needed information quite simply.
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addition, Re§{x”’Tx} > 0. Observation 1 now allows us to conclude that Re{A(T)] = O. Pre-

and post-multiplication by V only acts to scale the eigenvalues by 'ué", and therefore
Re{AM(VTV)] = O.

Letting A(VTV) = a + if, we have

_ gtiw _ etot+ fu+iloaw —ef)
AlL) = o +if 0(2+ﬁz

The above quantity will be positive real if e > 0 and if sgn(w) = sgn(B) = sgn(imf{pi).
The former condition holds due to our definition of ¢ and our assumption for p, while the
latter case is true at our discretion. Thus A(L;) and A(L;) are positive real, implying that
A(M) is positive real. Since multiplication by the square root of the velocity matrix will not
affect the sign of the eigenvalues, Re{A(R)} = 0. Therefore, R is a stable operator if

Ref{p] = O and sgn(w) = sgn(imip).

The eigenvalues and eigenvectors

In the Crank-Nicolson implementation of equation (1) operator R takes the form R’

Az
I—-——R
2

Az
I+ —R
2

R =
In order to gain increased accuracy of the second spatial derivative, the "1/ 6 trick” (Claer-

bout, 1982) may be used to redefine T as T".

T
Az?
6

T =
I + T

The eigenvalues and eigenvectors of R* are displayed in Figs. 1 - 4. M was truncated
to form the 45° extrapolation operator, T was chosen to equal T’, and the constants chosen
were ¢=0, w=m vg=1, Az =1, and Ax = 1. The x-direction has been discretized
over 32 points, so R" is a 32 by 32 matrix. Figures 1 and 2 show the eigenvalues and
eigenvectors for the case p = 0. The eigenvalues are distributed on a portion of the unit
circle, because the eigenvalues of T are purely real and ¢ = O. Note that the eigenvectors
of R* are also the eigenvectors of T. The eigenvectors essentially represent different k,
components of operator R’, from k, = O to k, = m (Nyquist). The wave propagation angles

spanned by the eigenvectors range from O to 90 degrees.
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FiG. 1. Eigenvalues of R” for p = O plotted in the complex plane. The real axis is horizon-

tal, the imaginary vertical. The eigenvalues are distributed along a portion of the unit circle;
note the different scales of each axis. The eigenvalues were plotted and labeled in the
order a-w,1-9.
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FlG. 2. Eigenvectors of R” for p = O. The eigenvectors are purely real. Each horizontal
trace represents an eigenvector. Eigenvectors correspond to the eigenvalues of Fig. 1 as
follows: the bottommost eigenvector corresponds to eigenvalue "a', while the topmost vec-
tor corresponds to value "9".
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FlG. 3. Eigenvalues of R’ forp =

imaginary

111 Stable extrapolation operalors
o))
CI) T T T T T T T T [ T T 7 T ] T T T T T i T T T T T ¥ I T T T
n
[ f
. _
n
of ]
o 4
°o[— k —
o
! - —
. _
. . _
of _
O)_ t
C; —
(.
L 1
. _
2 4
- ‘a,‘ -
oF
02 i ! 1 i I ) 1 Il i I | 1 1 1 ,l i 1 1 1 1 1 i 1 L l 1 I L { J 1 1 L i
-G.44 -0.42 0.4 -0.38  -0.36  -0.34  -0.32 -0.3
Real

. 7630 + 87161, the B1 boundary condition designed to

fully attenuate reflections for waves incident at 30°. The eigenvalues are now inside the

unit circle.

FIG. 4. Eigenvectors of R* for p =

Real

S b i

Imaginary

7630 + 971547, The real part of the eigenvectors is

shown on the left, the imaginary on the right. The eigenvector-eigenvalue correspondence of
Figs. 3 and 4 is the same as in Figs. 1 and 2.
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FIG. 5. Fourier spectra of the eigenvectors in Figs. 2 and 4. The case p = O is shown on

the left. Each horizontal trace is the spectrum of its corresponding eigenvector in the previ-
ous figures. Vertical lines denote the placement of each sample output from the FFT.
k; = m = Nyquist is in the center and negative frequencies are on the right side of each

plot. Note the relative smearing in the spectra near k, = + 12T—in the diagram on the right.

Figures 3 and 4 illustrate the case p = .7630 + .971561. This p-value was chosen in
accordance with the "B1" absorbing boundary condition of Clayton and Engquist (1980). p
was computed such that the side reflections of waves incident at the boundary with an
angle of 30° at either side are fully attenuated. The eigenvalues have noticeably moved to
within the unit circle due to the absorbing boundary condition, indicating that the energy of
waves will dissipate as they propagate downward to infinity, losing energy with each side
boundary reflection. The eigenvectors reveal changes also, but the differences are not as
clearly perceptible. In order to quantify the differences, the Fourier spectra of both eigen-
vector sets were computed and are displayed in Figure 5. Notice that the eigenvectors con-
taining the 9th and 24th spectral components (and neighboring components) exhibit less

sharply defined spectra after the inclusion of absorbing boundaries. This is precisely where

vk
we expect to see the changes, since sinfgpgorping = f_ = t1/s2implies that the eigen-

vectors correspondingto k, = + g-will be most affected.
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Reflection coefficients

Clayton and Engquist (1980) derived analytic expressions for the reflection coeffi-
cients arising from absorbing boundaries. As a matter of practical interest, we provide an

empirical evaluation of reflection coefficients for the zero slope and B1 boundary conditions.

Boundary reflections were attained by downward continuing plane waves with the 45
degree version of R’ described in the previous section, once for each of the 32 values of k.
We expect that the input wave, eik’, equals a reflection coefficient times the reflected
wave, 7e nik". The Fourier spectrum of the downward continued wave was compared to the
spectrum of the input plane wave, and the reflection coefficient r was computed as the

kz {out)

square root of the ratio of the spectral values p

z(in)

Figures 6 and 7 illustrate the reflection coefficient as a function of incident angle for
both boundary conditions. Although the reflection coefficient for the zero slope condition
should theoretically be unity for all non-zero angles, the slight discrepancies evident here
are probably due to the short (32 point) spatial axis with which computations were made.
The B1 boundary condition for Figure 7 was chosen as in the previous section, such that the
incident angle of greatest attenuation is +30°. Figure 7 exhibits this characteristic; waves
incident at 30° are virtually fully attenuated, while waves incident near 30° reflect with
substantially reduced amplitude. This graph closely resembles the analytic representation of

reflection coefficients shown in Figure 3 of Clayton and Engquist (1980).

Conclusions

A range of stable boundary conditions can be described for a finite difference imple-
mentation of any approximation of the exact paraxial wave equation. By defining a parame-
ter p, a perturbation of the second differencing matrix, boundary conditions have been
shown to be stable if Re{p} = 0 and sgn(w) = sgn(lm{pj). In addition, it has been
demonstrated that the inclusion of boundary conditions causes the spectra of the downward
continuation operator's eigenvectors to be less sharply defined for those eigenvectors con-
taining the spatial frequencies attenuated on reflected waves. The relative magnitude of
these reflections has been determined numerically, and is seen to closely resemble its previ-

ous analytic expression.
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FiIG. 6. Reflection coefficient magnitude as a function of incident angle for the zero-slope
boundary condition.
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FIG. 7. Reflection coefficient magnitude as a function of incident angle for the B1 boundary
condition, designed to fully attenuate reflections of waves incident at 30°.
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