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Parsimony criteria for missing data restoration algorithms

Jeff Thorson

Introduction

A previous paper [Thorson, 1982] discussed in general terms the artifacts that arise
from missing elements of data on subsequent processing of the data. Specifically, ignoring
the missing data is equivalent to padding with zeros (in all linear processes), and this can
give rise to undesirable artifacts that may obscure events of real interest. Considering the
problem of reconstituting data never collected in the first place, it is obvious that the choice
of a method for filling in the missing data is very much a subjective one. Knowing what we
want the missing traces of a data set to look like implies that we already have interpreted
the data to some extent, or have extracted information from it. Let us begin by making the
choice more objective, or at least try to isolate the subjectivity and quantize it. The cri-
terion chosen for a ""good'' restoration is that there is a model space, or space in which we
can interpret the data; furthermore, information is sparse in this space. To formalize the
missing data problem, we now make it subjective only in these two points: the choice of a
model space, and the selection of a parsimony or minimum entropy measure in the model
space. Missing data restoration then translates to maximizing the parsimony measure in

model space. The known data will appear as constraints to the optimization.

As a practical matter noise in the data must be taken into account, therefore the con-
straints imposed by the data should not be exact. The optimization problem is most easily

derived from a Bayesian point of view.

Bayes approach to the missing data problem

Derivations of functionals that measure maximum likelihood or other estimators of a

model begin with Bayes' rule:

_ p(dju) p(u)
pu]d) = 2(d) (1
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where p (u) denotes the probability density of u and p(u]d) denotes the conditional density

of u given d. The densities of equation (1) are all normalized.
To interpret Bayes' rule, let the following assignments be made tou and d:
u = ideal events in model space (free variables).
d = events in data space (knowns).

Let the functional relation between the two spaces be given by
Lu =d+n (2)

where L is always considered to be a linear operator, and n is a noise term. Let us now

assigh meanings to each of the probability densities in equation (1):

I

plujd) the answer, all that there is to know about u given d. In statistical estimation,
it is customary to provide a cost function, or some rule to select an optimal u
from the density p(u]d). In this case the rule shall be to pick u for which the

probability p(u] d) is maximized.
p(d]u)

i

the discrepancy in the relation Lu = d. Assign this density to be the density of
the noise present p(n). All densities p(u), p(d), and p(n) will be assumed to
have zero mean. Data that is known exactly will have an independent zero-
mean noise component with vanishing variance, while the missing data com-

ponents can be assigned arbitrarily large noise variances.

I

pu) a priori knowledge about u. Specifying this probability density will fix a par-
simony measure in model space. Just as for the case of p(n) in the data
domain, constraints on the solution u may be included in this density. In order
to set u constant over a portion of the model space, components of u need

only have an independent density of vanishing variance.

p(d)

It

a normalization term which is independent of model parameters u. It serves to

normalize equation (1):

p(d) = fp(dlu)p(u)du
In the optimization of (1) with respect to u, this term may be ignored, because
it is independent of the free variables u.

These meanings can be assigned to equation (1) because of the relation Lu = d. The model
space is the domain of the causative random process that generates a realization u. Data d

is the effect, possibly modified by an independent gaussian “oise process.
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The densities p(u) and p(n) are assumed to be gaussian in form, so that maximizing
equation (1) is equivalent to minimizing the negative of the logarithm of the densities. To be
more specific, assume the noise n to be an indepéndent gaussian process, with variances
that may change from point to point in the data space:

1

2
n

p(n) = 1_exp ——12—(Lu—d)T (Lu—d) (3)

M
where g,? is the diagonal covariance matrix and },, is the normalization factor for p(n). The
information about missing traces in the data set is incorporated in p(n) by specifying the
variances of those traces to be arbitrarily large. The corresponding elements of 1/(7,,z are

zero.

The density p(u) is chosen to be gaussian in appearance:

—l—uTC‘lu

> (4)

_ 1
pu) = o exp

but with the important stipulation that C is allowed to be a function of u. We shall make the
further assumption that events in model space are independent of each other. Then Clis
diagonal. Here, each element c;(wu;) of C is assumed to have the same functional depen-

dence on u; (i is the element index of u):
cu(u) = f(w)

With this assumption, each point in model space will statistically behave like any other,
independent of the other points. Independence of events is one of the desired qualities of
model space; if it is not exactly satisfied, the covariance C may be taken to be banded
rather than diagonal. On the other hand, the operator L may be redefined in an attempt to

diagonalize C.

Under the assumption of independence, Bayes' estimator is connected to the minimum

entropy property. The density p (u) may be rewritten in the form

A h 1 u;?
pu) = gq(Ui) where gq(u;) = ﬁu—exp ETIO%)

N is the number of points in model space. The relative entropy of u, apart from a constant

term arising from the factor 1/ M, , is estimated by

Entropy(u) ~ —E[log g (u;)]

u;®

F ()

N
Entropy(u) ~ )) = u’Wu (5)
i=1
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where W is a diagonal weighting function. The ensemble expectation of u in equation (5)
can be replaced by the sum over i because of the assumption of independence. Under the
constraint that the energy of u be fixed, Ju|| = constant, maximizing the joint density p(u)
is equivalent to minimizing the entropy estimator (equation (5)), depending on the form of the
variance f(u;). When p(u) is gaussian, f(u;) is constant, and from (5), the entropy is

invariant as long as Jju] is constant.
We can now introduce a basic criterion (or definition) for parsimony, that is,

(P1): J (u;) must be a positive monotonic increasing function of u;. Corresponding

realizations of the random process are parsimonisus.

This assumption makes the variance of p(u) increase with increasing u;, making large ampli-
tude outliers in model space more probable than in the gaussian case (constant variance).
By minimizing the entropy in equation (§) under constraints, The model space will tend to col-
lect outliers, with the remainder of the points in the space having a much smaller variance.
Condition P1 thus satisfies our intuition on what a parsimonious distribution should be like in
model space. Deeming [1981] discusses further the relation between condition P1 and

minimum entropy functionals, the case of minimum entropy deconvolution.

One example of such an a priori choice for f(w,;) is the following function (figure

1(a)):

[u:] <
[2(m° —m)) ] -1 (6)

]
+ ' [ui ] >
'"'iz °1zj i

S (wy)

The logarithm of the single-variable probability density function g(w;) is therefore propor-

tional to the function displayed in figure 1(b):

R

™my — -~ + constant Ju; | < wug
20,
log g(u;) = w2 (7)
m, - — = + constani fu; | >,
20,

This density, similar to a normal mizture [Godfrey, 1979], claims that there are two gaus-
sian populations of events in u; the majority with variance ¢,?, and the few with variance
a,z. This distribution also satisfies our intuition concerning parsimony. The specification of
m, and m, in equation (7} can be abscrbed into the furction olw;), with o still being mono-

tonic in wu;.
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FIG. 1. Mixture of two normal distributions. (a) the monotonic function ¢(w;) has two values
o, and g,. (b) Log density g of the distribution with the variances in (a). The relative values
of m, and m; determine the relative sizes of the two gaussian populations. m, and m.; can
be incorporated into a monotonic function f (equation (6)).

With the form of the probability density (7) defined, taking the logarithm of equation (1)

defines the parsimony functional (P2) that is to be minimized to solve u:

1

2
n

min uT;:—z—u + (Lu—-d)7 (Lu—d) r2)

This functional has the data constraints (the second term) included as a penalty term to the
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parsimony measure, the first term. If the data noise has constant variance, the noise vari-
ance acts as a penalty factor. The lower the noise, the more tightly the data constraints
are applied in the model domain. The algorithm (discussed below) designed to minimize the
nonlinear functional (P2) is an iterative algorithm: at each iteration, the current variance is
estimated from u, which then is assumed constant for the remainder of the iteration step.

This effectively ignores the derivative d o(w;)/ du;.

A nonlinear system of equations can be derived from (P2) by differentiating with

respect to u, ignoring the derivative do/ du;:

g g, o,

The noise variance may be assumed a constant ¢,%, except at points with no data, where
the variance is infinite. If this is the case, an2 may be pulled through the operator L7, leav-
ing behind a projection that annihilates the missing data part of d. The projector may be
incorporated into L without loss of generality. Multiplying through by o°® will give the

equivalent nonlinear system

Qu = b (9a)
Q= |+"2(—"2)|_TL (9b)
On
o*(u) T
b= ZW 1y (9¢)
On

This is the system of equations that will form the basis of the descent algorithm used in this
paper. Throwing away the derivative dg/ du; does no harm; it implies that when a solution u

is found, its variances are locally independent of u.

Parsimony criteria in model space

Now that a model domain has been chosen through the operator L, let us examine
choices for the a priori variance ¢*(w;) that defines a measure of parsimony. Under the
constraint P1, that o(u;) must be a monotonic function of w;, there is a wide freedom of
choice for g(w;). If the statistics of the solution u to equation (9) are known, these can be
used. This is generally not the case, so it is desirable to parameterize the function g(w;)
with as few parametiers as necessary., The curve of figure 1 is defined by three values: g,,
a,, and the cutoff value u, that determines the boundary between the two limiting gaussian

cases. The function of figure 1{(a) is a fundamental one, and far from being an extreme
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example, may be one of the most useful to apply to obtain parsimonious solutions to the non-

linear system (9). Let us take a closer look at it.

With ¢ defined by figure 1, note there are three possible ranges for the solution to lie
in:

(1) The entire population of u has the variance g,. If this is true, the distribution of points
u is gaussian, equations (9) become linear, and the problem turns into a linear least
squares solution for u, biased toward low energy in the model domain. Those points that
rise above the cutoff value u, are sparse enough not to affect the statistics of the

data.

(2) The entire population of uin the model domain has the variance g, assigned to it. This is
similar to the previous case, only that many u; values must be larger than the cutoff
value 1, to properly be assigned the variance o;. Relatively few values of u; can be
allowed to be below the cutoff, so that they do not perturb the estimation of a gaus-
sian distribution with variance o¢,. This implies that o; must be much greater than u.. An
exception occurs when the determination of ¢ is made from a smoothed version of |u |
(see the section below on smoothing). Then certain values of u below u; may
genuinely belong to a population with a variance of 0,7, if nearby values are larger than
1. Smoothing allows points in a common neighborhood to belong to the same population.

But the problem is still gaussian, and reduces to a biased least squares estimation for u.

(3) The values of u; in the model space straddle the cutoff v, to give an estimation of the
one-dimensional density g(w;) that is distinctly non-gaussian. Two populations of
points exist in the model domain, and to satisfy the intuitive criterion of parsimony or
"sparseness', many points should fall into the population of low values (call this popula-
tion "grass" [Rocca, 1982]). Relatively few points should fall into the high-valued
population (the population of "trees’). If the model is partitioned into these two popu-

lations, each set of points wili have their own separate distributions.

Because the minimization of the functional (P2) biases the solution of u toward zero, the
energy of uis determined by the constraints Lu ® d and by the penalty factor 0%/ 0,% The
selection of the noise variance, the cutoff u_, and the variances ¢,%, ¢,° are crucial to the
success of the optimization. They must be chosen so that the solution u falls into two popu-
lations: many points into the ''grass" and a few large-value points into the "trees". If u,; is
chosen too high or too low, u reverts to a least-squares solution which may not have the
desirable property of sparseness. If the operator LT preserves energy from data space to
model space (or approximately so), the choices of parameters in figure 1 may be made more

precise.
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Let A be the ratio of the expected area of the g, population to that of the rest of the
model domain: A = N;/ N. Most of the energy from the data should fall in the ¢, population,

thus an estimator of g, is

2 2 - A 2 2
ag" N — wU;® = — d;* A ——o0y (10)
! N, El ' N, ,Zl 7 N,
where N, = points in the g, population,

N = points in model space,
Ny = points in data space,
04° = an estimate of variance in the data domain.
Now ¢, should be a small fraction of ;. It may depend on the noise variance, if known,

assuming LT will spread noise over model space in a gaussian way:

1
t)’a2 A -jv—_ﬁ—l'—NdO'nz (11)

Finally the cutoff 1, should be put as far as possible below ¢;, but far enough above g, to
satisfy the ratio A. That is, the ratio of the number of points in the g, population that happen

to rise above the cutoff should be much smaller than A.

”—°~] > 1 -2 (12)
Uo

The effect of smoothing u on the determination of ¢

erf

Making o a function of a smoothed or linear-filtered version of u has a profound effect
on the solution of equation (9). It is usually the case that the shapes of the ¢, population in
model space are known a priori. As an example, suppose a vertical seismic profile is given
as d and define L to be a 2-D Fourier transform. Linear events will line up on rays that pass
through the origin in the Fourier domain. However the populations sort themselves out in the
Fourier domain, points lying in straight lines passing through the origin will have a tendency
to belong to the same population, with the same variance controlling them. Define smoothing
windows that smooth in this radial direction. So to get a better estimate of which population
a clump of energy belongs in, take the average of values |u;| over the window in order to
sélect a{w;). This smoothing process has no relation to the process of assigning positive
correlations among nearby points, but rather assigns the same statistics to nearby points
(those in the same window). As a consequence they will behave similarly in the solution of

the system (9). Any correlation in u may come only from the data through the operator L7,
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The variance of figure 1 can be selected to be a continuous function by defining it at
the points (o,]u;|) and interpolating linearly. But by neglecting the derivative of ¢ with
respect to u; in the derivation of the nonlinear system (9), the variances were assumed to
be piecewise constant. This in effect generalizes the two-population case to many popula-
tions. The advantage of having more populations is not a clear one, but making o{u;) con-

tinuous makes gradients continuous, which is an important factor for descent algorithms.

(a) (b)

30

- w

240
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1

)
T

[ 8
£
4

FIG. 2. (a) A sparse function in model space. A number of simple waveforms are randomly
placed in u. The horizontal p axis represents ray parameter, though it is not necessary here
to put dimensions on units. p ranges from a minimum of -3.2 to a maximum of 3.0. Ap is 0.2
and N,, the number of traces, is 32. Data (b) is the result of applying the slant stack
operator L to (a). The offset (h) axis ranges from O to 47, Ah = 1.0, and N, is 48. If (b)is
used as input to the system of equations (9), (a) will be the anticipated solution.
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A synthetic case -- slant stacking

As a test for solving the nonlinear equations (9), consider L to be a slant stack opera-

tor. The operator, equivalent to the operations of linear moveout and stack, is defined to be

N,

]
d(h,t) = 1) = — J—ph 13
(h,t) = Lu(p,t) v ;u(p ph) (13)

Since d and u are two-dimensional wavefields, the indices (p,t) and (h,f) now are used in
place of the single index i. The sum is taken over those p values where the index { —ph is
within bounds of the minimum and maximum values of the { index. The scale factor 1/ \/_j\E
makes the transformation nearly energy-preserving, if it were not for the bounds on the {
axis in model space. Besides having bounds, the { index is also discrete; in practice
u(p, t —ph) is found by linear interpolation of the adjacent f{-sampled points of . The

transpose of L is simply a slant stack in the other domain with dips of the opposite sign:

1
VN,

Ny,
w(p,t) = LTd(h,t) = 3. d(h,t +ph) (14)
h
With the scale factor 1/ /N, equation (14) is not precisely the transpose of (13). The

factors were chosen to preserve energy from one domain into another.

When the operator L. (equation 13) is applied to the sparse model of figure 2(a) the
resulting data is shown in figure 2(b). The data consists of a number of discrete events
with linear moveout, each event possessing the corresponding wavelet found in the model of
figure 2(a). The initial data for this test is that of figure 2(b) with a small amount of
independent gaussian noise added to it (figure 3). The objective is to restore the original
model of figure 2(a) from the noisy data. Selection of the model parameters g(v;) is the first

step.

Looking at the desired solution (figure 2(a)) it is apparent that it satisfies the mixed
gaussian model of figure 1. A histogram of the model of figure 2(a), displayed in figure 4(a),
bears this out. The low-end variance g,? is zero, while the variance 0,% can easily be
estimated. However, to make o continuous in u, the function ¢g(u) of figure 4(b) was
chosen as the a priori information in the model domain. Figure 4(a) compares the fit of the
continuous and discontinuous functions o(u) to the histogram of the model. It must be
remembered that in this test case we are taking advantage of information that would not
ordinarily be available. We have access to the statistics of the desired solution, and use

them to select o(wu).

One exception was made to the continuity requirement for g. At very small values of

u(p,t), the variance is chosen to be zero. This will clip the low values of w to zero, and in
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FIG. 3. The data of figure 2(b) with independent gaussian noise added. The variance of the
data is 0.15%. This is approximate, for the data is non-gaussian. The variance of the noise is
0.5%.

the iterative algorithm to be described, effectively prevents those points from varying any
further. The clip will gradually reduce the degrees of freedom of u in model space, because
once a point is clipped to zero, it will remain zero. One measure of the progress of the algo-
rithm is the ratio of zero points u to all points in model space. This is effectively a measure

of the g, population of u.

The next step is to choose a smoothing operator on u. The criterion is: what geometry
of points in model space are expected to lie in the same population? In our case the answer
is easy. The desired solution consists of time ({) sampled wavelets. Estimating o(w) is best
done by averaging over the same population, or averaging in time. For this example, the algo-
rithm applied a ten-point smoother on |« | in the time direction and used the smoothzd value

of |u | to select g.

The simplest descent method was used to solve the nonlinear system (9): steepest

descent. See figure 5 for a description of the algorithm. The only departure from linearity is
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FIG. 4. Selection of the variance function ¢(w) for the test. Graph (b) is a plot of two possi-
ble functions to use for ¢ in the parsimony measure (P2).

Curve | is a member of the mixed-gaussian family depicted in figure 1, and actually
represents Vf (u) rather than the actual variances ¢, and o,. Curve | satisfies equation (8)
with ¢, = 0, g; = 0.8, and u,;, = 0.035. The corresponding log density is labeled as curve |
on graph (a).

Curve |l in (b) is the function actually used in the optimization. 1t is a piecewise linear func-
tion of |u |, and its log density is labeled as curve Il on graph (a). It is continuous except
for the clip imposed at the smallest values of ju |; see text for discussion of the clip.

The histogram of figure 2(a), the desired answer, is also displayed as the scattered points
in graph (a). Curves | and Il were designed to fit the histogram as well as possible.
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Solve: Qu =

2
I + %h]u = 1_17d
13

On

Steepest Descent Algorithm

Initial u, =0

for £ =0,1,2, - -
estimate o(u; )

2
- o{u
O = |u+ —L(:) T(Lu, — d)
an

rd
_ Y%

CQr = — 7
9: Qg

Up sy = Up — OO

nezxt k

FIG. §. Steepest descent algorithm. The modification to a linear steepest descent algorithm
is in the estimation of ¢ at the beginning of each iteration. Otherwise it is the same, even
the step size o has the same form as in the linear case.

the modification of g(«) at each step by the process of smoothing » and applying the func-
tion of figure 4(b). Each step can be considered one iteration of a corresponding linear sys-
tem, with ¢ fixed. As a matter of fact, the process is expected to settle into a linear

steepest descent as 1/ ¢° in (P2) converges to an invariant weighting factor.

The initial estimate u = L7d is shown in figure 6(a). It has all the artifacts inherent in
inverse slant stacks. Streaks of energy at large constant dip represent truncation effects
at the edge of the data grid. Figures 6(b), 6(c), and 6(d) display the fifth, tenth and last
iterations respectively of the procedure. It is apparent that the method converges most
rapidly in the first few iterations, then for the remaining iterations slowly chips away at the
remainder of the error energy. The last iterate is very close in appearance to the desired

solution (figure 2(a)).

Figure 7 is a plot of the humber of zero points in u as a function of iteration number.
This parameter converges to the value that the desired solution has. As explained in the
section on parsimony, the zero count is a measure of the size of the o, copulaticn of u. itis
interesting to note that though the two-variance model of figure 1 was not used for the

descent, the solution reached is in agreement with this model.
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FIG. 6. (a) The initial estimate u = L7d. It has all the common artifacts seen on inverse
slant stacks. The streaked events at high positive dip are truncation effects from the
right edge of the data set (figure 3).

(b) Fifth iteration estimate of u.

(c) Tenth iteration estimate of u.

(d) Last (40th) iteration estimate of u. It has converged to the desired solution, with minor
exceptions.
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FIG. 7. Zero count of u in the model space as a function of iteration. The zero count con-
verges to (and exceeds) the value of 0.94 given by the desired answer of figure 2(a). The
zero count is the proportion of identically zero points w; to the number of points N = "Ny in
model space.

Because of the biased nature of the functional (P2), the energy in the last iterate of u
is slightly smaller than in the original model. If the solved model u were subsequently applied
to restore missing traces in d, the restored traces may have to be scaled to the original

data.
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47. A and B are both knights and C is a knave. Therefore, C is the werewolf.
48. A is the only knight and thus the werewolf.

49. The portrait is in the silver casket.

51. The portrait is in the lead casket.

50. 84 and 15,625.

62. Center field: Jake Left field: Mike Right field: Luke
Third base: Ken Second base: QOakie First base: Punky
Shortstep: Quick Pitcher: Nick Catcher: Rick

53. Saucer H4. Six 55. Five bananas.

56. The numbers one through nine are embedded in the names in numerical order.
57. Zero. If three letters match the envelopes, so will the fourth.

58. The boy maximizes his chance of drawing a ten—dollar bill by putting a single
ten—dollar bill in one hat and the rest of the bills in the other hat. His
overall chance of success is 14/19.

59. Let 1A stand for the insides of the first pair of gloves, 1B for the outsides,
2A for the insides of the second pair of gloves, and 2B for the outsides. Dr. X
wears both pairs, the second on top of the first. Sides 1A and 2B may become
contaminated. Sides 1B and 2A remain sterile. Dr. Y wears the second pair, with
the sterile sides 2A touching his hands. Dr. Z turns the first pair inside out
before putting them on. Sterile sides 1B will then be touching his hands. He then
puts on the second pair of gloves with 2B to the outside. In this way, sides 2B
are the only sides that touch Ms. H.

60. Number each bag from one to ten. From bag one, take out one coin. From bag
two, take two ccins. From bag three, take out three coins, and so on. Place

all of the coins on the penny scale and weigh all of them at once. If all

of the coins were made of fool’s gold, then they would weigh 110 ounces. If

bag one contained the real gold coins, they would all weigh 111 ounces. If bag

two contained the real gold coins, they would all weigh 112 ounces. The number

of the bag containing the real gold coins would be the difference between the
weight on the scale and 110 cunces.

61. 27. 62. Forty.
63. Each of the numbers contains an ‘i’ in their names. The next number is 31.

64. N. The letters are the first letters of the digits from 0 to 9.

65. Eleven crossings: 1) A and his wife cross, 2) A returns,

3) B’s and C’s wives cross, 4) A’s wife returns, 5) B and C cross,

6) B and his wife return, 7) A and B cross, 8) C’s wife returns,

g9) A’s and B’s wives cross, 10) C return, 11) C and his wife return.
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