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Butterworth dip filters

Dove Hale and Jon F. Claerbout

Abstract

Dip filters enable a geophysicisf to discriminate between various seismic events on the
basis of apparent dip. The frequency-wavenumber (k) domain seems an attractive domain
to perform dip filtering, because it permits the application of an arbitrary transfer function of
dip. Seismic applications of dip filtering, however, seldom require the flexibility offered by
the (w,k) domain; and one may often be willing to sacrifice this flexibility to obtain features
not possible with (w,k) domain filters, but readily available with time-space (¢,z) domain
filters. Examples are

(1) time and space variability,
(2) flexible treatment of computational grid boundaries,
(3) an efficient, recursive implementation.

We describe a (£,z) domain dip filtering method with these features.

In the derivation of a (£,z) domain filter, we first discuss (¢,k) and (c,z) domain dip
filters. While not fully possessing the advantages of a (¢,z) domain filter, these filters are
an attractive combination of two very efficient and commonly available processes: (1) one-
dimensional Butterworth filtering and (2) one-dimensional Fourier transforms. We then derive

(t,z) domain approximations to these filters which have the features noted above.

SEP-32



Huale and Claerbout 48 Butterworth dip filters

introduction

Because geophysicists can often distinguish desired seismic signals from unwanted
"noise' on the basis of apparent dip (or velocity), dip filters have found widespread use in
seismic data processing. A dip filter may, for example, be used to attenuate surface waves
which, in a common-midpoint gather, have greater apparent dip (lower apparent velocity)
than subsurface reflections. Previous papers pertaining to dip filtering have described
applications of this tool and/or algorithms for its implementation. (See the references for
general reading.) This paper falls into the algorithmic category. We describe a method of dip
filtering which has been used effectively in a variety of applications to seismic data, both

by researchers at Stanford and by members of the seismic data processing industry.

A dip filter is best specified by its frequency-wavenumber (w,k) domain transfer func-
tion which, ideally, should have radial contours of constant amplitude and phase extending
from the origin. As illustrated in Figure 1, each contour of a dip filter should represent a con-
stant ratio k/ w, corresponding to an apparent dip in the time-space (f,z) domain. Letting
p(t,x) denote input data and g(¢,z) filtered data, Figure 1 suggests the following computa-
tional method of dip filtering:

(w,k) domain dip filter
(1) P(wk) = FFT[p(t,x)]
(2) Quk) = H(wk) P(wk) = H(k/w) Plwk)
(8) g(t,z) = IFT[ @wk)]

FFT and IFT denote forward and inverse Fourier transforms, respectively. This commonly
used method is probably the most accurate way to apply an arbitrary transfer function of dip
H(w,k) = Fl(k/w). In practice, however, dip filtering in the (w,k) domain presents prob-
lems. One problem stems from the temporal and spatial non-stationarity of seismic data. For
example, the dips of reflections in a common-midpoint-gather change with both time and
offset because of normal moveout. Non-stationarity makes a time and space variable filter
desirable, and the Fourier transforms in steps (1) and (3) make the above method inherently
time and space invariant. Another problem is that, when applied to sampled data, this method
suffers from the periodic boundary conditions (''wraparound”) implied by the use of discrete
Fourier transforms. These problems, together with the fact that two-dimensional Fourier

transforms are computationally expensive, motivate the use of a (£,z) domain filter.

(t,z) domain dip filters permit time and space variability and a flexible (non-periodic)

treatment of computational grid boundaries. With care taken to ensure stability, recursive
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FIG. 1. Contours of constant amplitude and phase for an ideal dip filter are given by radial
lines in the frequency-wavenumber (w,k) domain. The transfer function H(w,k) of an ideal
dip filter depends only on the ratio k£ /w, which corresponds to apparent dip in the time-
space (t,z) domain. This particular filter passes low dips and rejects high dips.

implementations of these filters are more efficient than non-recursive algorithms. The two-
dimensional dip filters we derive in this paper are recursive in either the time or space
dimension, but not both. First, we derive recursive (f,k) or (w,z) domain dip filters. After
establishing the conditions for stability of these filters, the derivation of a stable, recursive

(t,z) domalin filter follows easily.

(t,k) or (¢,z) domain dip filters
We assume that the desired dip filter can be expressed as a cascade of filters having

power spectra of the following forms:

1

High —dip —pass | H(wk)]? = ———z (1a)
1+ —]D”
k
Low —dip —pass | H(w,k) R = ————-1—}6———2—,;— (1b)
1+ Do

where [ is a user-specified cutoff dip, the half-power point, and n is a positive integer

which determines the steepness of the boundary between pass and reject zones. The
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contours plotted in Figure 1 are of 20log;o | H(w,k)| for the low-dip-pass filter of equation
(1b)with D =2 andn = 1.

Note that the filters of equations (1) cannot distinguish between positive and negative
dips 1), because the power spectra are symmetric with respect to the frequency and
wavenumber axes; ie. |H(wk)| = | H(-w,k)| and | H(w,k)]| = | H(w,—k)]. We chose

these power spectra to resemble those of one-dimensional Butterworth filters

Low —frequency —pass |H() R = —— (2a)
©
1+ (8]
High - f requency —pass |H()|? = ‘—1027 (2b)
1+ g
@

where () is a user-specified cutoff frequency. Methods for implementing these one-
dimensional Butterworth filters in the time domain are well known (e.g., Oppenheim and
Schafer, 1976), and their use is common in seismic data processing. The similarity between
equations (1) and (2) implies that we may perform dip filtering in the (£,k) domain by the fol-

lowing algorithm:

(t,k) domain dip filter
(1) P(tk) = FFT[ p(t,z) ]
(2) Q(t.x) Butterworth[ P(t,k)] ; Q=k/D
(3) q(t,x) = IFT[ Q(t,k) ]

1l

Steps (1) and (3) are Fourier transforms over the space dimension only. Step (2) is the
application, for all k, of a conventional, time domain Butterworth filter with the cutoff fre-
quency (} = k/ D. Note that we must use a low-frequency-pass filter to perform high-dip-

pass filtering; likewise, a high-frequency-pass filter vields a low-dip-pass filter.

To appreciate the simplicity of the (¢,k) domain filter, and to lay the foundation for the
derivation of a (£,z) domain dip filter, we should review the key steps in the implementation
of discrete, one-dimensional Butterworth filters. Our review will be brief, including only those

points relevant to dip filters.

Discrete filters with spectra approximating those of equations (2) may be derived in
many ways. The simplest method which is valid for both low and high-pass filters is to use

the bilinear transformation
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LN o w] _ ,1—-7
—iw RN Zztan[z—]—21+z

where 7 is the unit delay operator defined by Z = e®™. For notational simplicity, we have

assumed a unit sampling interval. The bilinear transformation is particularly attractive
because it guarantees a causal and stable discrete filter /7 (7), given a causal and stable
continuous filter h(¢). For h(f) to be causal and stable, the poles of its Fourier transform
H(w) must lie in the lower half of the complex w-plane. From equations (2), one may readily
verify that the 2n poles of | H(w)|? lie equally spaced around a circle of radius |(}] at

locations

v; = IQIe—"i(Zji-l)ﬂ‘/(Zn) ; _7 =0,1, - 2n-1 (3)

Keeping only those poles in the lower half-plane (i.e., the first n poles), we may express

H(w) as a cascade of single-pole filters:

=
Low —frequency —pass H(w) = :Ijo So + iy, (4a)
High H) = ] ——i2 (4b)
igh —frequency —pass w) = JE] m—
for which the bilinear transformation yields
_ - 'LUJ(1 + Z)
Low —frequency —pass H(Z) = :1;1: 2V iy, —C )7 (5a)
, _ e 201 - 2)
High —frequency —pass H(Z) = jl;Io 2t iy, (2 -7 (6b)

Because the bilinear transformation warps the frequency axis, particularly at the higher
frequencies, the discrete filters in equations (5) are low-frequency approximations to the
continuous filters of equations (4). This non-linear distortion is actually desirable, for it
prevents aliasing by mapping the entire continuous frequency axis |w] < = to the segment
Jw| <. However, if we wish the cutoff frequency (1 to be the half-power point of the
discrete filters, as it is for the continuous filters, we must "pre-warp" () by replacing it with
2tan (| Q] / 2) in equation (3).

Having reviewed the fundamentals of discrete Butterworth filters, we may now examine
(t,k) domain dip filters more closely. As already shown, these dip filters require the applica-
tion of a time domain Butterworth filter for each wavenumber k, with the cutoff frequency
setto () =k/ D. All goes well until |k/ D| = m; note that the simple pre-warping of (1 is not
valid for Q> m. To solve this problem, we replace (} = k/ D in equation (3) with B(k,D)

SEP-32



Hale and Claerbout 52 Butterworth dip filters

defined by
k
2tan EF H ’—D— <17
B(k,D) = (6)
0a H -E— > 17
] 7 =
so that the poles v; become
v; = B(k,D)et®I*0n/B@n) o 5 =0,1, - n-1 (7

In practical computations, a very large number (say 101°%) may be used in place of infinity in
equation (6). As examples, the single-pole (n = 1) high and low-dip-pass filters derived

from equations (8), (6), and (7) are

Single-pole high-dip-pass

(2+B)&ix = 2-B)@ i + Bi(Prp + Pio1z) (8a)
Single-pole low-dip-pass

2+B)@x = (2-Be Q-1 + 2(Prg — Proy i) (8b)

where the recursions begin at £ = 0. (To simplify notation, we use subscripts for sampled
coordinates and avoid explicitly stating the dependence of 5, on the dip cutoff D.) Boun-
dary conditions are determined by the choice of P_, , and §_,,. For example, causal input

data implies P_,, = @, = 0.

The amplitude spectrum of a single-pole, band -dip-pass filter is contoured in Figure 2.
This spectrum was obtained by cascading the high and low-dip-pass filters of equations (8)
with D = 172 and D = 2, respectively. As expected, the half-power (-3 db) contours are
straight, because we have placed the poles according to equations (6) and (7). Other con-
tours, however, remain warped by the bllinear transformation. This unavoidable distortion is
most severe at the higher frequencies for which the bilinear transformation is a poor approx-
imation. Steeper high and low dip cutoffs are obtained by cascading more of the recursive
factors in equations (85). The amplitude spectrum of a six-pole (n = 6), band-dip-pass filter

is contoured in Figure 3.

To obtain {(w,r) domain dip filters, one simply swaps the time and space dimensions in
the (¢,k) domain filters derived above. For seismic data, we note the following advantages

of dip filtering in the (w,z) domain.
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FIG. 2. Contours of constant amplitude for a single-pole (£f,k) domain band-dip-pass filter,
implemented via equations (8). Note that the (bold) -3 db contour is radial as for the ideal
filter, but that other contours are warped by the bilinear transformation, particularly at
higher frequencies.
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FIG. 3. Contours of constant amplitude for a six-pole (f,k) domain band-dip-pass filter.
Note the increased steepness in the boundary between pass and reject zones when com-

pared with Figure 2.
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(1) The spatial axis of seismic data is usually more severely truncated than the tem-
poral axis; therefore, the periodic boundary conditions imposed by the use of
discrete Fourier transforms are most annoying in the spatial dimension. Padding
the spatial dimension with zeros (or whatever seems best) may help, but at the
cost of processing more traces. The recursive filters of equations (5) permit the

specification of arbitrary boundary conditions for no added cost.

(2) Each recursive factor in equations (5) may be cascaded separately; and each
factor requires only three (Fourier transformed) traces, the present and past input
traces and the previous output trace, to compute the present output trace.
[Recall the examples of equations (8).] Therefore, one may apply dip filtering for
about 3n times the cost of one-dimensional, frequency-domain filtering which, of

course, may be applied concurrently.

(3) Seismic data is typically stored by traces so that temporal Fourier transforms are

computationally simpler and cheaper than spatial Fourier transforms.

Note that the (£,k) and (w,z) domain filters permit non-stationarity in one dimension.
The (¢,k) domain filter of equation (8), for example, may be made time-varying simply by let-
ting the dip cutoff be a function of time, D) = D(f). For some applications, particularly if
time and space variability is needed, a (£,z) domain dip filter may be preferred. In the next
section, we derive a recursive (f,z) domain dip filter based on the (f,k) domain algorithm

described above.

(t,z) domain dip filters

The derivation of (f,z) domain dip filters from (f,k) or (w,z) domain filters is best illus-
trated by the example of equation (8a). Each multiplication in the wavenumber domain may

be replaced by a convolution in the space domain to obtain
(20, +bz) * g1z = (26;-bz) * g1z + bz % (Prz + Pro12) (9)
where b, and §, are defined by
by = IFT[ B ]
and

1 ;5 =2z=0
6z = 1o ; |z| =0

Note that solving for the unknown &, . in equation (8a) is rather simple, requiring only that
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we divide both sides of that equation by the scalar 2+5,. The solution of equation (9),
however, may be more difficult and costly, for we must deconvolve the filter 24, +b,. For
the (¢,z) domain filter of equation (9) to be computationally practical, we must make this

deconvolution inexpensive.

One way to speed up the deconvolution is to replace the filter 4, with a very short
approximation which we shall call a,. As an example, let us choose the length of g, to be 3
and suppose we have only four traces. Equation {8) may then be expressed in matrix form

as

[2+a0 a, 0 4] Hqt,l] ['rt,l]

a.; 2+ap 0, 0 |late t2 (10)
0 a., 2+ap @y ||q3|  [t3
0 0 a_; 2+ag) |9t 4 ta

where 7 , denotes the right-hand side of equation (9). To find the unknown g, ,, we must
solve this tridiagonal system of equations. Fast algorithms for solving tridiagonal systems
are well known and are, in fact, used routinely in finite-difference migration programs (Claer-
bout, 1976). These algorithms make the solution of tridiagonal systems [like equation (10)]

quite efficient and practical.

The computational advantage in solving tridiagonal (or any banded) systems becomes
particularly apparent for large systems, for the cost increases only linearly with the size of
the system. Letting A denote an m xm matrix with the coefficients of a, on its diagonals

as in equation (10), we express the ({,r) domain versions of equations (8) for m traces as

Single-pole high-dip-pass
(2I+A)qt = (2' _A)qt—l + A(pt + pt_l) (113.)

Single-pole low-dip-pass

(2I+A)g, = (21-A)q; ; + 2(p;, — P 1) (11b)
where
@ =(q, g2 - fIt.m)T
and
Pe=(@1 Pez 0 Pem)
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The real problem with implementing equations (11) lies not in their solution, but rather in
finding a suitable approximation a, to b,. This approximation must satisfy several condi-
tions. Because B, is real and even, b, and, hence, o, must be real and even. Recall also
that B, is non-negative for all k. This condition is, in fact, necessary to ensure stability of
the (£,k) domain dip filter, for it guarantees that none of the poles v; lie in the upper half of
the complex w-plane. [See equation (7).] Therefore, 4, must also be non-negative which

implies that A must be a positive semi-definite matrix.

A further condition on A stems from our stated goal of time and space variability.
Recall that the coefficients g, on the diagonals of A depend on the dip cutoff D. To make
the filters of equations (11) time variable, we let the approximation g, be a function of time;
equivalently, A = A(t). Space variability is obtained by letting a, vary down the diagonals
of A (making A non-Toeplitz), while keeping A positive semi-definite. In practice, the
approximation o, should depend on D in some simple way so that the cost of computing the

matrix A is not unreasonable.

Subject to the conditions of a positive semi-definite A and a simple dependence on D,
we seek an o, with Fourier transform approximating 2 (k) given by equation (6). To this end,
we approximate B (k) by the first term of its Maclaurin series:

ﬁ(k) = |k

Zeroing E(k) for wavenumbers greater than the Nyquist and inverse Fourier transforming,

we obtain (Bracewell, 1978)

g(x)

il

[ |
%— sinc (z) — ;——sincz[gl
which we may sample without aliasing to obtain

: z=0

NIII

147_.2
D nz?
0 ; otherwise

;  |z]=1,8,5, -

Let us try the 3-coefficient approximation a, = (-2/m, n/2, -2/ w)/ D, obtained by
truncating 5; for |z ] > 2. Recall that these three coefficients lie along the three main
diagonals of the tridiagonal matrix A. Because the sum of off-diagonal elements in any row
of A is less in magnitude than the diagonal element, A is diagonally dominant and, by

Gershgorin's theorem, positive-definite (Strang, 1980). And because each element in this
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tridiagonal approximation is a simple, linear function of 1/ D, a time and space variable

implementation is very efficient.

Substituting A into equations (11) and cascading high and low-dip-pass filters with
D = 1sz2and D = 2 as before, we obtain the amplitude response contoured in Figure 4. Note
that the half-power (-3 db) contour, which was straight for the (¢,k) domain filter, is now
distorted due to the two approximations made in deriving the tridiagonal matrix A. First, by
using E(k) in place of B(k), we effectively assumed that the warping caused by the bil-
inear transformation is negligible. This assumption is most valid when the temporal axis of
the input data is oversampled and, for seismic data, may be quite reasonable. For example,
if the input data contains little energy in the band of frequencies above half-Nyquist, then
we should not be concerned with distortion in that band. In practice, we should direct our

efforts at improving the transfer function in the so called "'seismic band".

0.5

LEDdb 10db

WAVENUMBER (cycles/sampte)

o] 0.25 0.5
FREQUENCY (cyctles/sample)

FIG. 4. Contours of constant amplitude for a single-pole tridiagonal (£,z) domain band-dip-
pass filter. The coefficients of the tridiagonal approximation are (—-2/m, n/ 2, =2/ m)/ D.
Note the distortion at low and high wavenumbers, particularly for higher frequencies. The
contours of this filter may only approximate those of the ideal dip filter over a limited fre-
quency band.

The second approximation we made was in truncating gz. The well-known Gibbs
phenomenon affects the low and high wavenumber response primarily, because the Fourier
transform of bN, has a discontinuous first derivative at zero and Nyquist wavenumbers. We

may improve the low wavenumber response by modifying the off-diagonal coefficients of A
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according to a, ={(-n/ 4, n/2, —n/ 4)/ D, so that 4, = 0. Cascading high and low-dip-

pass filters as before, we obtain the amplitude response contoured in Figure 5.

0.5
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T
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FIG. 6. Contours of constant amplitude for a single-pole tridiagonal (£,z) domain band-dip-
pass filter. The coefficients of the tridiagonal approximation (—n/ 4, n/ 2, -/ 4)/ D were
chosen to improve the low-wavenumber response. Compare with Figure 4.

One might tune the tridiagona! approximation more finely to yield better contours over
some freguency or wavenumber band, but, generally, to obtain a more ideal transfer function,
we must increase the length of the approximation a,. Equivalently, we must increase the
bandwidth (the number of non-zero diagonals) of the matrix A. Fortunately, even though the
resulting system is no longer tridiagonal, we may use the weli~known Cholesky decomposition
to solve the banded, positive definite system. An efficient algorithm for solving such sys-
tems has been published by Martin and Wilkinson (19656). As for tridiagonal systems, the
computational cost grows linearly with the size m of the system. The cost, however, grows
quadratically with bandwidth, so we should always keep the length of o, as short as possi-
ble.

The amplitude response of the band-dip-pass filter contoured in Figure 6 was again
obtained by cascading high and low-dip-pass filters, but here using an 11-diagonal A in
equations (11). The coefficients a, were obtained by truncating bNx for |z| >6. The
remaining amplitude distortion is due almost entirely to approximating B(%) with only the

first term g(k) in its Maclaurin series expansion. Including more terms [ultimately using
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B(k) exactly] would improve the amplitude response, but would complicate the dependence
of A on the dip cutoff D; specifically, this dependence would no longer be linear. Further-
more, a more lengthy g, would be required to avoid the low and high wavenumber distortion
due to truncation. The 11-diagonal filter of Figure 6 represents a compromise between

accuracy and computational efficiency.
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FiG. 6. Contours of constant amplitude for a single-pole 11-diagonal (f,r) domain band-
dip-pass filter. Compare this amplitude response with that of the single-pole (£,k) domain
filter in Figure 2. Almost all of the contour distortion is at the higher frequencies and is due
to neglecting the warping effect of the bilinear transformation.

As Figures 4, 5, and 6 illustrate, the distortion of the amplitude response is most severe
for small dip cutoffs D, because the accuracy of the approximation 5(1«:) depends on the
magnitude of |k/ D|. In other words, the (¢,z) domain dip filters described above pass or
reject high dips quite accurately, but perform less well when used to pass or reject only low
dips. This suggests that, for D < 1, we might wish to interchange the temporal and spatial
axes in equations (11) and replace D with 1/ D. The resulting filter would be recursive in

the spatial rather than the temporal dimension.
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Conclusions

The Butterworth dip filters described above are similar in form and implementation to
one-dimensional Butterworth filters. They are recursive, with well known and easily satisfied
conditions for stability. (f,k) or (o, ) domain filters combine the computational efficiency of
one-dimensional Butterworth filters with that of one-dimensional discrete Fourier transforms.
The simple analytical computation of coefficients for these filters makes a time or space
varying filter practical. For demultiplexed seismic data, usually severely truncated spatially,

an (w,z) domain filter is particularly attractive.

We derived (f,r) domain Butterworth filters by inverse Fourier transforming and
approximating the equations for (£,k) or (w,x) domain filters. These (f,z) domain filters are
potentially time and space variable; in practice, however, this potential may be realized only
when one is willing to accept distortion in the filter's transfer function. While the transfer
function of the ({,z) domain dip filter may not be ideal, the advantages of time and space
variability and a fast, recursive implementation make this filter appealing for bandlimited
data or for applications where fine discrimination between dips is not required. Such an
application may be the attenuation of ground roll which typically has a much greater
apparent dip than subsurface reflections. Our experience in applying (f,z) domain Butter-
worth dip filters to seismic data suggests that even the simple tridiagonal approximation is

suitable for many applications.
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