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Signal/Noise Decomposition

J.F. Claerbout, W. Harlan, E. Ottaolini, J. Toldi, and R. Ullmann

l. Use of Migration for Signal/Noise Decomposition. Jon 7, Clerbout

When an impulse is diffracted it produces a hyperbola. Many impulses produce many
hyperbolas. Let the (y,f)-plane have an impulse at every point. The strength and polarity
of each impulse is independently drawn from a Gaussian distribution. You get a lot of hyper-
bolas. They overlap everywhere. It has never been proven, but the cognizenti say that
among so many hyperbolas, individuals are no longer distinguishable. The hyperbolas don't
look like hyperbolas any more. You can't see their velocity. What you see looks just like
more independent Gaussian random variables. This is a quirk of the Gaussian probability dis-
tribution. With a "high tail” distribution, you should be able to recognize individual hyperbo-

las.

We commonly observe hyperbolas in reflection data. Likewise with migrated reflection
seismic data we commonly see many semicircles. Indeed, before-stack migration processing
seems overwhelmed by semicircles. This leads to the idea that geophysical signals and
noises seem to be more spikey than Gaussian. By this idea, signhals are spikey in the depth
domain, and noises are spikey in the time domain. Certainly missing traces and cable trunca-
tions are more spikey along the horizontal space axis in the time domain than would be their

representation in the depth domain.

In this section, a specific model is formulated for field data with these attributes, and
some clumsy methods are proposed for decomposing it into signal and noise parts. In the fol-
lowing sections others propose their chosen methods of decomposition using this first data
model as a starting point. Readers are invited to suggest improvements on all the proposed

methods.

SEP-32



Claerbout et al 38 Signal /Noise Decomposition

A Scatterer M odel for Signals and Noises

Define a stretching function
Stretch®(z) = sgn(x)|z|* = =z]|z|*! (1)
Define a signal model as a stretched Gaussian random function in midpoint-depth space.
Z(y,2z) = Stretch®[Gaussion(y,z)] (2)

Likewise, define a noise model as a stretched Gaussian random function in midpoint-

traveltime space.
T(y,t) = StretchP[Gaussian(y,t)] (3)

Observational data D(y,t) is modeled by

D(y,t) = T(y,t) + Diffract[Z(y,z)] (8

The parameters o and f are greater than unity, but otherwise are unknown. The problem
is this: Given D(y,f) and some good programs for migration and diffraction, how do you

decompose to find 7 and Z ?

The model embodies many aspects of reality, but in some ways it is artificial. A realistic
model for Z would involve some spatial correlation. This is omitted because it is so compli-
cated to characterize the spatial correlation properties of realistic geological models. Natur-

ally we will try to avoid techniques which would involve this artificial aspect of our model.

Tools

Obviously, good migration and diffraction programs are presumed to be available for use.
They may be used iteratively, but in practice only about three iterations would be done.
Because of evanescent energy, we may assume that diffraction will undo migration, but not

the converse.

A basic estimation tool is low-pass filtering. In today's application this is likely to be on

the y-axis with a tridiagonal matrix, say

lLoPaoss = -——15——- €))
Vo 1-yg ‘5w
—yR 6
HiPass = yoz Wy (6)
Yo 1 — Yo 6yy

The parameter y, characterizes the cutoff frequency of the filters.
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Automatic gain is defined as any dynamic range compression technique. Often it is
smoothing the envelope, followed by raising to a fractional power. In today's application it

may be useful to define a parameter y, as the amount of smoothing along the y -axis.

Gain® D(y,t) = L(% (7
Y <|Dl>yl

Inverse automatic gain is defined only after automatic gain has already been done and the

gain divisor has been stored away for later use.
G [ G [Dy,t)1]1 = D(y,b) (8)

A possible hint is provided by some data processing philosophies which say that you
should always transform to Gaussian before averaging. It is like the idea that you should
never average numbers which are suspected to be out of scale with one another, because
then the average will be biased by the averaging technique. Low pass filtering is averaging.
This philosophy seems to say that you should always AGC before lowpass filtering, then un-
AGC afterwards. Ordinarily, a high-pass filter is just one minus a low-pass filter. This philo-
sophy seems to say that a proper high-pass (PHP) operator should also be done after AGC

PHP = 1 - %LowPassG = 15(1—Lo'wpass)G = -é—HiPassG (9)

The Crudest Decomposition

A crude guess is that the flat top of a hyperbola or the flat bottom of a semicircle can
be discriminated against by means of low frequency ky rejection in the appropriate space.

Specifically

f’(y,t)

HiPass D(y,t) (10a)
v

Z(y,2) HiPass D(y,z) (10b)
4

A problem with {10) is that it makes no attempt to satisfy the constraint D = 7 + Z. Some

of I is copied into both 7 and Z and other components of D may not go into either.
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Next Guess

The next guess attempts to prevent energy in I from ending bothin 7 and Z. Obvi-
ously, T', Z, and D can be expressed in either (y,f)-space or in (y,z)-space. In an effort
to avoid clutter so that key ideas stand out, we will no longer explicitly indicate migration or

diffraction. That will be deducible from context. For the next guess, you iterate with

T = PHP(D -2 (11a)
Z = PHP(D -T) (11b)

This solves the problem of energy of 2 ending out in both f" and 2 The problem
remains that low k,-frequencies don't end out either in 1’7: or 2 Thus (11b) seems to be
able to capture the texture on a horizontal bed, but not the bed itself. Sufficiently dipping
beds should be captured nicely by (11b). We can get the data constraint (4) to be fulfilled

if after iteration of (11a,b} we append one final step

Z = D-T (11¢)

ll. An lterative Method of Removing Noise Fon Ullmann

Below is a possible solution to the problem of how to process seismic data to separate
the signal and from the noise. This process uses a great deal of computation, so some short
cuts must be made. The assumptions for this method are that the signal is an extended
Gaussian function in the depth domain, the noise is an extended Gaussian function in the
time domain, and the data is the sum of the noise and the diffracted signal component. The
extended Gaussian function means the seismic data consists mainly of noise spikes and
hyperbolas which are diffracted from the signal spikes. The purpose of any processing is to

separate the noise spikes from the hyperbolas.

The first step is to start migrating down the time axis, but stopping part way down the
axis. The migration will start to collapse the hyperbolas into point sources and cause the
noise spikes to broaden and form semi~circles. The migration is stopped when the noise
spikes have developed into short flat events on the section. By running a proper high-pass
filter along the y-axis, the flat events from the noise spikes and the top of the hyperbolas
will be attenuated. Vertical events, such as the arms of the hyperbolas, will not be

affected. Next, pass this section through a diffraction program to return it to its original
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state. The noise that was causing the semi-circles is gone and the signal still exists in the
arms of the hyperbolas. This assumes that the energy in the arms of a hyperbola will not dif-
fract into a shape other than a hyperbola. This results in a severe attenuation of the noise
and a less severe attenuation of the signal. Subtract this section from the original section,

which has the effect of removing part of the signal without removing the noise.

Repeat the above process on the data iteratively, but migrate further down the time
axis before applying the high-pass filter. After this process is repeated several times, the
final section will consists only of noise. Apply automatic gain to the noise section so that
noise level is near the level of the original data and subtract it from the original data. The

final result is a section in which the noise is attenuated.

The important property of this process is how it affects the reflections from flat, hor-
izontal beds. The migration program will not affect the flat reflections. When the high-pass
filter is applied, the reflections will be removed along with the noise. When this is sub-
tracted from the original data, the noise and the flat beds will remain unchanged. After this
process is done, the only thing left when the noise section is subtracted form the original
data will be the signal spikes that caused the hyperbolas. To correct for this, a final proper
high-pass filter should be applied to the noise section before it is subtracted from the origi-
nal data. The filter will eliminate the flat reflections before they are subtracted from the ori-

ginal data.

I1l. Migrating for Signal/Noise decomposition. John Toldi

The observational data D(y,t) consist of two parts: the noise, modelled as a series of
large, randomly distributed (in ¥ and f) spikes and the signal, modelled as a series of large
amplitude hyperbolas (the diffracted y - 2z spikes). The spikiness present in the models
comes about through the application of a stretch function to gaussian random functions. The
stretch function reduces the amplitude of values less than one, while amplifying values
greater than one. The net effect is to produce a distribution which is richer in small values
than a gaussian distribution, and hence spikier. The goal of the process | am describing is to

separate the signal from the noise.

The first phase is to crudely eliminate the bulk of the signal, through the application of
& high-pass y-axis filter. To properly precondition the data, we need to first apply Automatic

Gain Control (AGC) along the y direction. At this point we would want to use a short

SEP-32



Claerbout et al 42 Signal /Noise Decomposition

smoothing operator in determining the envelope, since otherwise the large noise spikes
would still be way out of scale with too many of their neighbors. Now high-pass filter the
data along y to eliminate the flat tops of the hyperbolas, and hence much of the signal
energy. Even though we have filtered out some of the low frequencies of the noise spikes,
the large inverse AGC for those points will somewhat boost them back up, relative to

the hyperbolas. The tails of the hyperbolas will still be present, since they appear to be

rich in high frequencies in y. With inverse AGC, this phase becomes:

E(y.t) = 1E[Hn;gfqoass,,(1)(y,t)] G (1)

The second phase begins by migrating the filtered data. The noise spikes will produce
semi-circles, while the tails of the hyperbolas will focus back into depth-domain spikes. Only
the evanescent energy will no be properly re-focussed. Now AGC along the y-axis, followed
by a low-pass filter. This sequence will filter much of what remains of the signal spikes,
while leaving the bottoms of the semicircles produced by the noise spikes. Of course, some
of the noise spike energy residing in the semi-circle tails will be lost, but much of the energy

is concentrated near the bottom. Now inverse AGC, then diffract to get back to the time

domain:
Fly,z) = %[Lowpassy(migrated [E(y,t)D] G 2
H(y,t) = Dif fract(F(y,z)) (3)

Finally, we identify:

T(y,t) = H(y,t) = noise (4)

é(y,t) = D(y,t) — H(y,t) (5)
and

Z(y,2) = migrate [Z(y,t)] = depth—signal (6)
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IV. Separation by filtering amplitudes. William Harlan

Let us use a filter which extracts locally strong, 'spikey’ amplitudes and rejects
regions of low, uniform amplitudes. Such a filter should reject hyperbolas or semicircles
because of their unfocussed low amplitudes. If hyperbolas or semicircles dominate a partic-
ular section, then focussed, spikey energy will dominate after diffraction or migration. By
beginning the decomposition in the proper domain, we can always see that the spikey infor-

mation stands out.’

Let us not define this filter in terms of frequencies present. We cannot expect spikey
peaks to contain frequencies with magnifudes very different from those of hyperbolas or
semicircles. Phases do differ substantially, but in a difficult way to grasp in the frequency
domain. A dip filter, which relies on phases, could discriminate some hyperbolic energy from
focussed energy, but a very poor percentage of it. But we already have a perfect hyper-
bola filter--migration. We only need recognize a single high amplitude point in depth to know
the energy and location of a hyperbola in time. Fiiter amplitudes then, not frequencies. The
essence of our filter will be that focused energy, spikey peaks, will be relatively high in

amplitude, whereas unfocussed energy, hyperbolas and semicircles, will not.

Now define the "amplitude filter.” This filter will operate directly on individual samples
of the data, but as a function of the gained analytic envelope we store previously. Samples
with high envelope values, down to a certain cutoff, should be retained at full strength;
lesser samples should be attenuated as a smooth function of the envelope values. Such a

filter is

1+

Envip(C;)

C; is the sample, and Ag is the cutoff amplitude of the envelope. By operating as a function
of the gained analytic envelope, the filter will not attempt to deepen troughs between high
peaks, a change which would greatly alter the frequency content. The preserved high ampli-
tude portions of the data should resemble the same regions of the original gained waveforms

as much as possible.

We are almost ready to describe an iterative decomposition of the data. First, we
reduire migration and diffraction subroutines which preserve energy: the sum of the squares
of amplitudes should remain the same after transformation (except for boundary losses).
Then, if one domain contains greater amplitudes than the other, we know that it contains

more focussed energy. Begin the separation of Z(y,z) and T(y,z) in the section with the
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highest amplitudes, for the highest peaks are certain to contain focussed energy; the other
domain may be dominated by strong hyperbolas or semicircles. Assume for demonstration

(but not in general) that the migrated section has the highest amplitudes.

Now for the loop. Begin with the migrated section of the original ungained data. Apply
the amplitude filter, with a relatively high cutoff, so that we keep only the highest-
amplitude, best-focussed peaks. Diffract this section and subtract from the original data.
Now we should expect the noisy peaks to stand out because the strongest hyperbolas are
gone. Extract the spikey peaks corresponding to noise from this section by the same pro-
cedure used on the depth section. Migrate the extracted peaks and subtract from the origi-
nal migrated data. Amplitude filter this section, but with a lower amplitude cutoff than
before because the strongest semicircles are gone and cannot interfere. Continue the cycle

at least once more and end in the depth domain, after removing the migrated noise.

Though this algorithm worked very well with synthetic sections, it failed with real data
because of the density of geologic events. When high amplitude geologic events were
extracted, most of the energy of the overlying semicircles were extracted too, thereafter
impossible to identify as noise. We need an additional linear transformation to make the
geological events more parsimonious, to reduce the strong lateral predictability of these
events. In this way we can reduce the overlapping of signal and noise. A slant stack

serves the purpose very well as we saw in the preceding article.

V. DIPXOR Noise Removal. Rick Ottolini

The DIPXOR process removes noise spikes from an unmigrated seismic section. The
name of this process derives from that it is a combination of dip filtering and exclusive or-
ing of seismic sections. This process requires no migration or diffraction during the course of

noise removal.

This process makes use of the fact that reflections and noise have different charac-
teristics in dip space. On an unmigrated seismic section, reflection events appear as line
segments, hyperbolas, or some combination thereof. Noise is defined as spatially and tem-
porally uncorrelated spikes. Any local portion of a reflection has a relatively narrow dip

range. A noise spike consists of essentially all dips.

The DIPXOR process begins by decomposing the unmigrated seismic section into several

seismic sections, each representing a different narrow range of dipé. The dip slices cover
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all dips between -90 and +90 degrees. The dip decomposition is linear, so the original sec-

tion is returned by summing all of the dip sections.

The second part of the process is to selectively sum together the dip sections to
obtain the unmigrated section free of noise spikes. The summation algorithm is that if a sam-
ple exceeds a certain strength on more that one dip section, it is not summed into the result.
In digital logic this called exclusive or-ing. Since noise spikes would appear on most of the
dip sections, then they would be eliminated by this selective summation. Of course, the
selective summation would have to take in account the spill over of reflector energy into

neighboring dip sections and the possibility of intersecting reflectors of different dips.
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FiG. 4.7a. Sketch of two-soliton solution of Kdd. Pewiashvili ion from (3.3.91). In

;:w .Qw:inin case, ky=k,, p1= quv,\w»_. This pattern moves in the x-direction with speed
(ki+pi).

sheet of water lies, and restrict our attention to the symmetric modes (so that
(4.1.6) holds). Now we are considering waves on a freely suspended sheet of
water, such as that studied by Taylor (1959). The main advantage of this
configuration is that viscous effects are much less important.

v) If %Vw (dominant surface tension), Zakharov and Manakov (1979)
have solved (4.1.23) exactly by a generalization of IST. They require boundary
conditions restrictive enough that lumps are excluded a priori. The asymptotic
(£ c0) behavior of the solution with these boundary conditions was given by
Manakov, Santini and Takhtadzhyan (1980)

4.1.b. Internal waves. The internal oscillations due to gravity of a stably
stratified fluid are known as internal waves. Both the oceans and the atmos-
phere usually are stratified, and they support rich spectra of these waves (e. 2.,
Phillips (1977)). In fact, the waves at the air-water interface that we have just
discussed may be thought of as an extreme case of internal waves (caused by an
extremely large density gradient at the interface).
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FiG. 4.7b. Oblique interaction of two shallow water waves. ( Photograph courtesy of T. Toedtemeier




