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Signal/noise separation with slant stacks and migration

William Harlan

Abstract

Geologic events strongly color a seismic section spatially. Removable noise is spatially
white and non-gaussian (parsimonious). Transformations, such as slant stacks and migra-
tion, exist which make geology parsimonious. To estimate a parsimonious signal from a gaus-
sian background, one should zero low amplitudes, which are not parsimonious. One should
estimate geology after transformation and noise before--removing one from the data before
estimating the other. Estimations with a slant stack separate real data into geology and
noise very well. Similar existing algorithms (e.g. using slant stacks to prevent aliasing) do

not make local estimations, thereby failing to remove noise or introducing artifacts.

Recognizing geologic color with slant stacks and migration

Geologic events on seismic sections show strong spatial color for two physical reasons:
1) geological time events may be represented as a superposition of hyperbolas because of
the wave equation; and 2) earth reflectors are layered. Only geology contains color. Noise
includes missing traces, improperly amplified traces, hardware noise, and cultural noise--any
event unconfirmed by other measurements. We do not include multiples and sideswipe

because their statistical sources are similar to that of desired primaries.

Because of the geologic color, a transformation exists which makes geology white and
more non-gaussian (more parsimonious). Such a transformation makes noise colored and
more gaussian. With any approximation to the best transformation (which depends on the
rocks themselves), we may estimate all geology containing color recognized by the transfor-
mation. ldeally one prefers an adaptable transformation suited to the data at any interac-

tive step. Migration and slant stacks suit most data sets sufficiently well.

SEP-32



Horlan 26 Signal /noise separation

Migration with the wave equation removes some color by inverting wave propagation.
Geologic hyperbolas map to single points; noisy spikes become weak semicircles. Much color
remains, however, because reflectors are very predictable. A slant stack of a seismic sec-

tion, defined below, maps lines of all dips into points.

+o0

Q(p.t) = [ Ply.t+py)dy

The integration is over the spatial dimension (midpoints for CMP stacks). Slant stacks
remove the first order spatial color of events--faults and horizon curvature being higher
order. Since curvature is predictable, geology will show some color over p values. Most
geolagy is very limited in slopes and p values; noise occupies all p's. Slant stacks make
geology much more parsimonious than do migrations and slightly less than both together.
Migration alone removes an insufficient amount of color for a memory-less estimation of geol-
ogy. Neither migration or slant stacks can be completely inverted, but adjoint transforma-
tions (diffraction and inverse slant stacks) can restore all geological information in the sec-

tion. One need lose only high, non-physical dips.

Deriving an ideal separation

Let I represent a forward transformation chosen to make geological events more parsi-

monious. A decomposition of the given section, the array d, becomes
d=L"g+n
where I~ ! is the adjoint of 1, g the expected array of transformed geology, and # the

expected array of untransformed noise. d — #i = L7'7 is the desired section, without noise.

Before any decomposition one must estimate the statistics of § and @ as probability
density functions (p.d.f.'s) p,(7) and p,(F). With such information our best estimate of g

(by subtraction implying a best #i) is a maximum a posteriori estimate (MAP estimate):
I. A MAP estimate finds the most probable g given d, p, (%), and p, (7).
Another estimation method shall be called the generalized minimum entropy method:

II. The minimum entropy method solves for the § from which one can estimate o

maost ordered (most predictable) p, (%) and o, (7).

The entropy of a p.d.f. of an array Z is defined as
—fp(:f) Inp(z)dz

Entropy measures the predictability of the array values. Method I/ is inherently iterative:
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estimations of § imply better estimations of p,(#) and ﬁg (7), implying better estimations of
g. g and n must possess redundant statistics in order to estimate the corresponding
p.d.f.'s. By choosing I well, one assumes that the elements of # and g, call them n; and g,

are not colored. Statistical independence implies
2,F) =[] q¥g) 5 pa(®) =[] gf(ny) (1)
i i

Events have no a priori most preferable distribution in g or @, so all samples in one domain

share the same p.d.f.'s. We further simplify

q¥(gi) = q,(g:) 5 ql(ny) = gp(my) (2)
We may assume equations (1) and (2) successfully if L is well chosen. When array ele-
ments are independent, they must be as parsimonious as possible to satisfy //.

I If § and 7 are uncolored, the minimum entropy estimate of § requires g

and 7t to be as parsimonious as possible.

The elements of the best § (implying an %) represent many samples from 94(g:) and g, (n,),

SO
IV. We can estimate p, (%) and p,(F) from a best g.
Lastly, equations (1) and (2) allow us to say
V. A MAP and a minimum entropy estimate of § are equivalent,

The powerful generality of / may be achieved by the easily applied J///. To prove V we

begin with the explicit expression of a MAP estimate of g.

max[pw | a)] = max {P(‘f | 9) p(@)]
4 g p(d)

- mgx {Dn(a— - L1g) p,(g)] - m;n [—lnpn(a - L7g) - Inpg(g_)}

We have used Bayes rule at the second step. Because of equations (1) and (2) the above

is equivalent to

- m;n {2 —Ing,[(d - L7'§),1 -3 Inqg(gi)] (3)
i [

where n; = (d — L7'g);. By statement /V we can calculate the estimated p.d.f.'s g, and

69 from the § which minimizes (3). Quantity (3) is equal to

4+ +=

N [ =Gn(m) Ingn(nyddng + N, [ —3,(g:) Ingg(g:)dg;
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N, and N, are the number of samples in the arrays. We no longer sum over elements of the
best g and m. We integrate over all possible values of n; and g;. If our original choices of
94(9:) and g,(n;) were good, then g, ¥ g, and g, ® g, and the above minimized quantity

equals the minimum entropy of the geology and noise p.d.f.'s.

Choosing a decomposition algorithm

After our chosen transformation the highest amplitude events are parsimonious. By
selecting high amplitude events and zeroing the low, we obtain a parsimonious section,
therefore a good estimate of our geology (by //7). We shall see later how this high ampli-
tude selection derives from the statistics of the geology and noise. Knowing a crude histo-
gram of g; and n; (or the approximate number and magnitude of both events) determines a

cutoff. We may always choose a cutoff conservatively high.

Ideally one prefers to eliminate colored noise overlying the extracted geology. One
cannot use a prediction error filter because some color remains in the geology and because
few adapt quickly enough to avoid biasing dips and frequencies. At the first iteration, how-
ever, one need only recognize the strongest geology. Noisy energy diffuses throughout the

p —t domain, so the amount of overlapping energy is small.

Next we inverse transform the strong geology and subtract it from the original data.
Now strong, parsimonious noise dominates weak, diffuse geology. We estimate noise by
selecting high amplitudes and subtract it from the original data. We may transform and

iterate again.
Let us summarize an iteration of our decomposition:

1. Forward transform the seismic section.

2. Estimate the strongest geology by zeroing small amplitudes,

3. Inverse transform this estimate and subtract from the original section.
4. Estimate the sirongest noise by zeroing small amplitudes,

5. Subtract this estimate from the original section.

One should subtract sections only in the original domain, otherwise noise will be lost by the
inverse transformation. When estimating one should consider analytic envelope amplitudes,
otherwise the troughs of high amplitude wavelets will deepen and alter the frequency con-

tent of events. We make our estimation somewhat dependent on neighboring time samples.
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A sample decomposition

Figure 1 displays a CMP stack of a deep marine seismic survey over the Aleutian Arc
region of the Pacific (courtesy of the USGS). The section ranges from 7 to 8 seconds, sam-
pled at 4 ms and 100 m along midpoints. A hardware problem produced the short interrupting
waveforms. Trace 40 was intentionally zeroed as missing data. The noise in this zeroed
trace is the negative of the reasonable geology one expects. These features exemplify

highly visible, spatially white noise.

We begin our decomposition by transforming the section to the slant stack domain (Fig-
ure 2). Color remains in the geology because of the original curvature. Barely visible linear
events are noise, diffused through all p values. Since only physical p values appear here,
the geology shows remarkable parsimony. Performing the slant stack in the frequency
domain allowed the wrap-around to see dipping events in the corners of the section. Without

an appropriate sinc-based interpolator, strong artifacts will appear.

Next we zero all samples with envelope amplitudes below 12% of the maximum. Figure
3 shows little change, though all non-overlapping noise is gone. The strongest 88% of geo-
logical amplitudes remain. We inverse slant stack this estimate (Figure 4), and subtract it
from the original data for Figure 6. The noise events stand out from a weak background of
colored geology. The 40th trace, as expected, contains the negative of the geology it

hides.

To estimate noise we zero below 12 % of the maximum. The result, Figure 6, contains
only spatially white events. We subtract the strongest noise from the original data (without
removing any geological information). Where spikes or missing data stood, now stand the
strongest geological events. To remove weaker noise, we use this section as the starting
point of a new iteration. We lower cutoffs to 1% and arrive at improved estimates of the

noise, in Figure 8, and of the geology, in Figure 9.

A calculation of the estimation function

We may derive a theoretical estimation function from the geology and noise statistics
and compute it numerically for the sample decomposition. Let d’; be a sample of transformed
data, the sum of two components: d*; = g; + n*;. Primes indicate that components are not
In their original domains. We assume we know g “,(n";) and g,(g;). The most probable value

of g, given d’; is

+ o0
s fgiqsr(gi)q ‘n(d’;—g9:)dg;
E(gi|d") = fgiq(gild'i)dgi = o= (4)
- g’q(d’y)
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We have used Bayes rule in the last expression.

Let us calculate (4) for our sample data. We take the fully separated geology and
noise in Figures 8 and 9 and compute from each an implied p.d.f. Figure 10 displays a histo-
gram of the geology, and Figure 11 of the noise. The noise amplitudes cover a slightly
greater range of values. The geologic components are slightly more gaussian. The differ-

ences are not enough to estimate noise first from the data.

After a slant stack the histograms are markedly different (Figures 12 and 13). The
geology contains much higher amplitudes, and the noise is more gaussian. We compute a
p.d.f. for the data (Figure 14) as a convolution of the geology and noise p.d.f.'s. Substitut-
ing into equation (4), we calculate F(g;|d";)/d’; as a function of d°; (Figure 15). The
function reveals that values of d’; above a low cutoff accurately estimate g;. Lower ampli-
tudes should be diminished because containing substantial noise. To keep only very prob-
able geology and avoid any noise we zero these lowest samples. Performing an inverse slant
stack and subtracting from our original data gave us Figure 5. Figure 11 still represents a
histogram of the noise of this section because none has been removed. But the remaining
geology is more gaussian and lower in amplitude (Figure 16). Using equation (4), we arrive
at the estimation function in Figure 17. We can now estimate the noise well by discarding

low amplitudes.

Other algorithms

If one knows beforehand the location of missing traces, one can replace them after one
iteration with the negative of extracted noise traces. Many attempting to fill in missing
traces to prevent lateral aliasing will perform forward and inverse slant stacks, interpolating
a greater number of traces on the return. Without a local operation in the p —f domain one
will see most of these missing traces again, with geology only weakly restored. Most who
propose this cruder method restrict the range of p values narrowly around the highest ampli-
tudes, thereby excluding most of the noise energy but introducing the artifacts of a sharply

truncated dip filter. One needs a local operator in the p —f domain.
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FIG. 10 (top left). The fully extracted geology (Figure 9) produces a histogram, (an approx-
imate p.d.f, ignoring color) with a non-gaussian distribution of amplitudes.

FIG. 11 (top right). The fully extracted noise (Figure 8) produces a more non~-gaussian his-
togram than the geology but with a similar range of amplitudes. Estimating noise first from
the original data would fail

FIG. 12 (bottom left). After a slant stack the samples of the extracted geology show a
higher, more non-gaussian distribution of amplitudes.

FIG. 13 (bottom right). After a slant stack the fully extracted noise becomes much more
gaussian. Amplitudes are very low.
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FIG. 14 (top left). A slant stack of the original data gives a distribution equal to a convolu-

tion of the geology and noise p.d.f.'s.

FIG. 15 (top right). Equation (4) gives E(g;|d";)/ d*; from the three previous p.d.f.'s. We
estimate geology from a slant stack (Figure 2) by diminishing low amplitudes and keeping
high ones at full strength. For a conservative estimate, we zero low amplitudes.

FIG. 16 (bottom left). With the high amplitude geology removed from the original data as in
Figure 5, a histogram of the geology shows a lower, more gaussian distribution of amplitudes.

The noise in Figure 5 remains as in Figure 11,

FIG. 17 (bottom right) With the strongest geology removed from the original data, the esti-
mation function for noise also recommends diminishing small amplitudes:
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