Lateral Velocity Anomalies
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Introduction

Accurate seismic velocities play a very important role in properly imaging the earth in
structurally complex areas. In addition, attempts to detect hydrocarbons directly, l.e. bright
spot analysis, often depend on the ability to correctly determine whether a particular region
has an anomalously slow or fast velocity. Unfortunately, conventional velocity analysis,
which consists of measuring coherency along hyperbolic trajectories in offset-traveltime
space(i.e. determining stacking velocities), can lead to meaningless estimates when velocity
changes rapidly in the lateral direction. Since the two important applications of accurate
seismic velocities mentioned above are precisely cases where the velocity does change sig-
nificantly in the lateral direction, some improvement to the conventional method of analysis is

clearly desirable.

In this paper we will discuss two different approaches to velocity estimation in areas
with significant lateral velocity variations. The first approach avoids the problems associ-
ated with stacking velocities, by dealing directly with traveltimes. This is the approach
taken by Neumann (1981), Kjartansson (1979) and Dines and Lytle (1879), whose methods
we review In the first part of this paper. The second approach does deal with stacking
velocities, but develops some relations which allow them to be more properly related to the
actual Interval velocities. Lynn and Claerbout (1979) developed such a method, then
Loinger(1981) presented a model which gives a linear relation between interval velocity
anomalies and stacking velocity anomalies. In the second part of this paper, we will follow
Loinger's approach, with some modifications. In particular, we will discuss the transfer func-
tion between interval and stacking velocity anomalies, with its implications on bright spot
analysls. Finally, in the third part of the paper, we will compare the traveltime and stacking

velocity approaches.
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1. Using Traveltimes Directly

Assume that our data are T(h,y,2q) i.e. traveltimes as a function of offset and mid-
point for a particular reflector at depth zg. Assume also that z, known, and that rays are

rectilinear.

You would like to determine W(y,z) for z<zg, where W = - 1 —— = gslowness,
interval velocity

for wavelengths of lateral velocity anomalies less than a cablelength.
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A problem with this type of approach is that traveltimes are uncertain and éxpensive to

determine.

a) Neumann's approach

Zs

—
e

Divide the subsurface into blocks, the unknowns are the slownesses, W,-,-. You find that
T = AW, l.e. a set of linear equations relating slownesses to traveltimes. This set of equa-
tions can then be inverted for slowness W. It will be ill conditioned, so more properly some

sort of pseudo- Inverse will be required.
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b) Algebraic Reconstruction Theory (ART)

This is one way to invert the equation 7 = AW.

1, 2, | 3, 4,

/

1. For a particular ray, divide traveltime equally among all blocks crossed by the

ray. (Add some weight if the ray only touches the block, vylthout passing near its

center)

2. Repeat for all rays.

3. Average slownesses for all rays passing through one block.

4. Could continue to non-rectilinear ray-tracing in an iterative manner, by
refracting through the newly determined slowness field (or a smoothed version

of It), then repeating steps 1,2,3 for the new set of rays.

¢) K jartansson (1979) _ : _ _

—N—
- Y
Zop b — —
Z,
N
Z
If rectilinear rays are assumed,
VhR+z§ #of h{zg — 24,) h(zg — 2,4,) ]
T(y,h,zq) = *—7;—0—' le(y- -——-2;0—92—,2,”) + W(y+ '———gz—o—m——,zm) dzg{1)
[}

l.e. collect traveltime along the ray by multiplying distance by slowness. We have chosen to

define z,, as being positive downward ,to be consistent with the notation used in the latter
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part of this paper. Note that this is opposite to the direction chosen by Kjartansson. Since
h,zy are known, we can remove the cosine factor by defining:
T = Zg
h +zg
Now transform i to k (the equation is stationary in y), resulting in the following set of linear
equations, one for each k:
fo_ kh(zg ~ Zg)

Ty (h,zg) = 2 [Wi(2g)c0s . dzg, (2
0 0

Where %, and T, ’ are the Fourler transforms of # and T’ respectively. Note that the dis-
tance from the anomaly to the reflector 2z, — 2z, acts as the transform variable for h. This
has a nice physical interpretation: Shallow velocity anomalies (i.e. zg — 24, large),
correspond to rapid variations in traveltimes as a function of offset. In addition, the value at

zero offset, h. = 0, corresponds to the integral over the variations in depth.

Now transform over h, with 7 being the transform variable. To do this, one must assume
h unbounded (i.e. unlimited offsets )

iz ]
fW,,(zm) S exp][qh:tkh(zc Zan) idh Az,

{=—w
*o k(zg — 24pn) k(zg — 2gs) ]
fW,,(zm)ldl'q - ———To——‘] + G[W + ——z—o—‘]] dzg,
REnl
zo|1 ] (3)

k
Where |k | >|n]. Finally, identifying

f’,,('r].zo)

—W,
|k| k

k
Zan = z0[1 - "T]
we find
—_ ~ F4
Wk(zcn) = lkl=1n] Tx i » = ] (4)
zm

/R
k

Clearly there will be some smoothing due to the limited offset range. This equation could be

used as an inversion formula (as written), or, perhaps better, it could be turned around and

SEP-32



Rocca and Toldi 5 Lateral Velocity Anomalies

used as a direct formula for T given W.

2, Using stacking velocity

Let us plot in the usual t? — z? domain the traveltimes correspondent to a reflector in a
constant velocity medium, for a CMP gather, and let one of the traveltimes increase. The

interpolating straight line will change its slope, thus changing the apparent r.m.s. velocity.

12 4\ with anomalous
without anomalous point \
poinr\ ~

~

without anomaious point

FIG. 1. a) t? — z? plot with increased traveltime for one trace at small offset. b) t? — z*?
plot with increased traveltime for one trace at large offset.

As seen in figure 1, increasing the traveltime of one trace of the CMP gather for small
offsets will increase the rms velocity, whereas at large offsets, the same increase in travel-

time will decrease the calculated rms velocity. More specifically, given a set of n pairs of

r,s which you want to fit with a straight line, s; = m7; + g, and the origin of the r; chosen
(]
such that 2 r, = 0, the choice of m that minimizes the sum of the squared deviations from
i=1
the line is

'm.=—"=—1——— (5)
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A variation As at ¥ will produce a variation in m

FAs

. (6)
’I'iz

t=1

Am =

Looking at the standard hyperbolic traveltime equation,

tiz = tg + 272 (7)
v,
rms
P — 1 —_ 2 — 2 1 n 2 . .
we can identify m = —— s; = {f, and ry = 2% — -——-Zx , resulting in
Vrms Nisy
Am = v—';Z——A'u,.,,,s = 2W, AW, (8)
Tms

where W, is the apparent rms slowness [H and AW, is the change in apparent rms slow-
TINS

ness due to the time variation {; at x;. To cast the right side of equation (8) into a useful

form, we use

1 & 2 2 L2
—y z? = Y, zPhr N Z—
n S nlAz 2 3
and
n n & L4
), z* Y zthzr N n=—
i=1 nhz 2 5
where L= cable length, giving
LZ
Ty = 22—3—
and
< = - = % —-2— + —
= i=1 3 i=1 3 3 9
-4 a4
25 ™
Finaily,

F.a— L‘z}
3
T (@
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To get {;Af; in terms of interval slowness Wi, we begin by rewriting the hyperbolic travel-

time equation (7) in terms of apparent rms slowness We
tf = w2 [422+z2]
then differentiating,
240t = 2w, [4zz+z2]A W

and using the fact that for a single anomaly in interval slowness AW, at depth 2 and of

thickness s, AW, = AW, Es;—, we find

2
LAt = 2W,,sz[1 + fz—z—]AWm : (10)

which can be substituted into equation (9) to yield

2W.,sz[1 z* ]P Lz] AW

_ 4z*) 3]
W AW, = 2 "
—nl

45
_ 156
AWa = > ﬁ ][1 + —]AW (11)

So far we have found the change in apparent rms slowness corresponding to a change in

or

interval slowness at a particular offset z. A more useful form would be to have the
anomalous Interval slowness specified at a particular midpoint coordinate Yan, and then look
at the change in apparent rms slowness as a function of midpoint.

The following relations can be derived from figure 2,

F4

L =

22

27
xr = z_zm (y yq,n) = L_,(y _yan)

It is worth noting that in a layered medium, the relation between /. and L’ would be more
complex; we could, however, relax the straight ray hypothesis. In a constant velocity

medium we have,

12 [2(y — yan)
422 | L

16 sz
2 nl?

[Z(y ;’ym) }2

]AW in(Yan) (12)
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A4
W

FlG. 2.

We would now like to consider the effect of an anomalous layer, by summing over y,,, but
we first must cast EQ 12 into a form where Ay corresponds to one trace width.

L — L'
"= 2n

’

so we can identify '2'17,:—‘" EQ12 as -IAI—-

4

Summing EQ (12) over y,, , and writing the sum as an integral yields,

2 2 2
AW (y) = [—2 szl (v - y“")‘ 1 1+ Lz Y - Yan) AWm(ym)A’ (13)
L2, L’
1 2 I' 2
_ 15 2y| _ LR 12y || w aw. '
= e szakﬁ-] 1 l1 + E’ﬂ’_{ﬂ AW (y) (14)

That is, AW, is the anomalous interval slowness convolved with an impulse response, where
the "Impulse” is just a unit magnitude anomaly in interval slowness, of thickness s, at depth
2., and width equal to one apparent trace spacing (apparent cable length for that depth
over number of channels). Some insight into the nature of this impulse response can be
gained by looking at its Fourier transform. Thus, transforming the impulse response
F(z,2,,,y) over y to F(z,25,,K), then using a dimensionless wavenumber

KL(z—2g) _ I’

k= 2 - 2,wefmd

SEP-32



Rocca and Toldi 9 Lateral Velocity Anomalies

16552
L2kS

+ [(6+10c)k3 - 720k]cosk}

[[(2+2c)lc4 + (-84c —6)k? + 72c]sink

F(z,24p,k) = (15)

2

where ¢ = 4L R This transfer function is plotted in figure 3 for¢c = 0 and ¢ = .4,
z

For ¢ = 0, and k& small, the transfer function is ®k?, that is, a second derivative opera-
tor. A similar result was derived and discussed by Lynn and Claerbout (1882). To see what a
more typical value of ¢ would be, we need to first discuss the effect of muting the data.
Muting makes the cable length I a function of depth. For a linear mute that reaches full

offset at 2 seconds, with a velocity of 2000 meters/sec and a true cable length of 25600

meters,
L(z) = —2-'—5——2 = 1.26z
2
s0 a more typical value of ¢ is
2
c = L(zg R4
42z

The most striking difference between the ¢ = 0 and ¢ =.4 cases is at the low wavenumber
end. Note that for ¢ = .4 the transfer function is not equal to zero at £ = O; in particular it
is positive. This is an intuitively satisfying result, since it says that an increase in the DC
component of interval slowness will produce an increase in the DC component of rms slow-

ness.

Another interesting feature that can be seen in figure 3, is that the magnitude of the
transfer function achieves a maximum at k~3.5. This feature is shared by both the ¢ =0
and ¢ = .4 cases. This feature can be thought of as a resonance phenomenon, since for
given depth of reflector, depth of anomaly and cablelength, there is a particular wavelength

of interval slowness anomaly that will give a maximum response in anomalous apparent slow-
nass. More quantitatively, the resonance occurs at k = !—(él‘—&i 3.5 or AR L’. That rms

slowness should be particularly sensitive to velocity anomalies of wavelength /.’ makes

sense, if we recall the simple picture that introduced this section on stacking velocity.

X

2 I~ .
e with anomalous

~ * ¥
points % l

without anomalous points

o
—

><2
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Clearly there is a maximum change in rms velocity when all of the large offsets sense a posi-

tive anomaly and the small offsets sense a negative anomaly. Such a situation will occur at

AR L’ and again at A ™ —L-z—, thus explaining both the minimum at k ~3.5 and the maximum at
k7.

One remalning question about the resonance is why the transfer function should be
negative at k ~3.5. The essence of the resonance phenomenon is that the effect of the
small offsets on rms velocity is reinforced by the large offsets, so that in evaluating the
sign of the effect, we can concentrate on the small offsets. As discussed earlier, a
decrease in interval velocity at small offsets will produce an increase in apparent rms velo-
city. When the cable is centered over a negative lobe of the anomaly (recall that we are
looking at the response to a particular wavelength of anomaly), the low offsets will be sens-
ing the negative part, and the high offsets the positive part, with the net effect being a
positive value for the anomalous rms velocity. The anomalous interval and rms velocities are

thus 180 degrees out of phase, i.e. the transfer function is negative.

3. Comparison between traveltime and stacking velocity approaches

So far we have only looked at the response to an anomaly at a particular depth. In
order to compare the responses of traveltime and stacking velocity to anomalous interval
velocity we will need to integrate the transfer functions over depth. Thus for a reflector at

depth z, we find

z
AW (2 k) = 125: .{G(z,zm,k)Awi(zu,,,k)dzm (16)
where, from EQ (15),
-,gg—{k2+20)k4 + (~84c —6)k? + 720]sink
G(z,24p.k) = (17)

+ [(6+10c)k3 - 720k] cosk}

2
and as in EQ (15), ¢ = 4L =~ Equation {16) is the one to invert if we want to retrieve inter-
z

val velocities from anomalous rms velocities. If the number of anomalous levels is equal to
the number of horizons chosen for the rms velocity analysis, the system of equations is
lower trlangular. Obviously we can always choose to consider more reflectors than

anomalous levels.
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Now suppose that the interval slowness, ¥;, is constant , except for at depth 2z,,,

where there is an anomaly AW;(k,z,, ), of thickness Azg,. Equation (16) then becomes,

: 2 A
AW (z,k) = J_E:—G(z,zm,lc) Zz'm AW,
and the relative response,
AW(z,k) 1522 Az, AW,
Wolz o) = g2 CEEenk) W, (18

We can go through the same procedure with the traveltimes. Under the same model of

anomalous interval velocity at one depth, EQ (2) becomes,

hK(z—24,)
_(zz&‘]AWiAzm

where X is the conventional wavenumber. Then the relative response,

AT(h,2,K) = 2cos

h -
2cos _K_M] AW, Az,
AT(h,z,k) _ z (19)
T(h,z,k) 22W;

th] Azan AWi

L) T (20)

cos

in terms of the dimensionless wavenumber k. As in the earlier part of the paper, where we
saw that » and z —z,, served as transform variables, we see from EQ (19) that for small ~
our relative response is insensitive to the depth of the anomaly. If we had only one anomaly,
and knew it's depth, then clearly any offset would work fine. If, on the other hand we had

more than one anomaly, and wished to also resolve their depth, then clearly the maximum

sensitivity to depth would occur when h = h,; = g—, giving

(21)

AW,
—ATlfor the h = -é'—case (EQ 21), is plotted in figure 4 along with W" : Note that the

transfer functions are equal for k = 0, a result which can also be derived by comparing EQs

Ve

(18) and (19) in the limit as k »0. Note also that at resonance the response is greater

than the Ag—response by a factor of about 7. The effect on the -—Ai?—-response of using a
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different offset, would just be to change the period of the cosine, leaving the amplitude
unchanged. Thus, regardless of the particular offset used, the rms slowness will be more
responsive to a particular spatial bandwidth of anomaly than wiﬂ be the traveltime. Of
course, with traveltimes one has the possibility of statistically combining the results derived

from several offsets, and thereby improving the response.

Conclusions

In this paper we have discussed two very different methods for determining interval
velocities, one based on traveltimes and one based on stacking velocities. While the use of
stacking velocities instead of traveltimes entails a loss of the offset dimension, and hence a
loss in redundancy, we showed that for a single offset the methods are quite comparable,
Indeed for a certain spatial bandwidth of anomaly, the stacking velocities are much more
responsive than are the traveltimes. One big advantage to using the stacking velocity
method is that stacking velocities are a standard product of a conventional processing
sequence, whereas traveltimes are not. One could, then, imagine that the stacking velocity
method described here could easily be added on to a standard processing sequence at very
little cost. By contrast, any method using traveltimes must, of course, begin with the deter-

mination of traveltimes, a major effort in itself.
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