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1.1. Condlusions,

In this chapter we have defined a linear velocity spectrum as the image of a
CMP gather in Snell midpoint coordinates for a hon—vertical Snell reference wave.
This definition fulfills most requirements of a velocity spectrum. 1) It is obtained
through linear transformations in the data. 2) Energy distribution is a local func-
tion of velocity. 3) Velocity estimation can be done with any slanted reference
Snell wave. 4) Interval and RMS velocities are measured directly in the data. 5)
Cable truncations and refractions do not severly impair resolution. Also, unlike
semblance techniques, it is easy to identify the events used to get the velocity
function. The spectrum is flexible, the choice of the reference Snell wave could
be done to suit the particular data set of interest. When several reference Snell
waves are used, the LMO method can be used to quantify the effect of velocity
variations between reflectors in the interval velocity estimates. For computation,
Stolt's method is fast and can be combined with a hyperbolic deformation to shar-
pen the image. The fifteen degree wave equation in offset space is particularly
useful since v(h, 7) can be used to resolve multi—valued velocity functions. We
do not need a priori knowledge of velocity. The method is sensitive to aliasing,
but the LMO correction partially solves the problem. All these properties make the
spectrum attractive, not only for velocity estimation but in applications demanding

a data space satisfying linearity and locality requirements.
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Appendix A: Wave Equation In Snell Midpoint Coordinates

The most important wave—field extrapolation equation in reflection seismol-
ogy is the double square root equation. In this appendix we transform it into

Snell midpoint coordinates.

The double square root equation is defined by (Claerbout, 1982)
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¢ is the takeoff angle and U, is the emergent angle to the vertical.
A representation of the wave—field at any depth is given by
F(s,g,z,t) = (A.3)
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where we assumed depth dependence in Z through the velocity.

Retarded Snell midpoint coordinates are defined as:
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Using Snell's law, pgv = sin?d, we can rewrite these equations as function

of pg only
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Using the chain rule for partial differentiation
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assuming constant velocity, we can Fourier transform all the variables to get
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This matrix defines the transformation between field coordinates and Snell

midpoint coordinates in the frequency—wavenumber (c;—k) domain.

With Eq. (A.6) we can transform the double square root equation (A.1) into

Snell midpoint coordinates. It is convenient to define normalized variables for the

offset A, midpoint ¥ and time—depth 7 variables in the frequency—wavenumber

(co—k) domain as follows
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When there is no dip H equals the sine of the stepout angle. Near zero offset ¥

equals the sine of the geologic dip.

Since w = w’, from now on we will drop the prime from w. Rewrite the

transformation (A.6) as
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making the appropriate substitutions in Eq. (A.1) we get the resuit

PoV
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This equation describes wave propagation with a wavefront that leaves the
surface of the earth with angle ¥, = sin™!(pyv, =0). When the value of the ray
parameter pg is zero we obtain the double square root in midpoint offset coordi-

nates:
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Appendix B: Phase shift method

The phase shift method (Gazdag, 1981. Dubrulle and Gazdag, 1979) imple-
ments directly Eq. (3.1). This method has the advantages of being exact, up to
Nyquist frequency, and to accept stratified velocity v(z). However it is slow in

its computer implementation. We derive here the discrete version of it.

Let g be the discrete version of f

gl,m,n) = fLAL,mATRAL) (B.1)
where Ah, Ar, and Af' are the sampling intervals, I =0,1,2,..., L-1,

m=01,2,. ., M-1,n=0,12,. . ,N-1
The discrete Fourier Transform is defined by

1 .
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wherex=0,1,2,..,L-1,=0,1,2, .., ¥-1,v=0,1,2, .., N-1,and

WL = 82" v-1/L

WM = 8217'\/—_1/11 (B~4)

Wy = gRnV-1/N

in these equations V=1 implies the positive branch.

In the frequency domain the discrete data is given by

Q(a,Byy) = Flalky,,fAk ,yAw) (B.5)
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where

_ 2n - -
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The observed data at the surface is given by g(i,,m =0,n). Its Fourier

transform is @(o,f=0,y). Downward continuation is achieved using the discrete

version of Eq. (3.3),

m
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where the velocity is given at intervals A'r]—, i=12,...,M-1. In practice AT is

kept constant.

The imaged data is found Fourier Transforming Eq. (B.7). Assuming constant

At

L-1 N-1 m ;
g,mm) = .z Q(i,m=0,k) exp { V=1 I Tijekbdw At Wi Wy
1= = j=

(B.10)

It is convenient to assume the sampling intervals are the same in time and time-

depth coordinates, AT = Af',
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substituting the imaging condition n A’ = m AT, or n = m. in our case gives

L-1 N-1 kT (f -1

qlmn=m) = L T QUi,m =0k) Wy ™ W, (B.12)

To use this equation in a computer algorithm it is more efficient to find the
wave—field g(I{,m,n =m) not from @(i,m =0,k) but from @(i,m —1,k). This way
only one phase shift is needed and previous computations are saved. Rewriting
Eq. (B.12) as

LCer i s k(7o -1 o4
gl,mn=m) = _ZO kZO Qli,m—1,k) Wy ™ W (B.13)
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This equation can be implemented in the computer with the aid of a Fast Fourier

Transform algorithm.

Appendix C: Stolt method

Stolt's method (Stolt, 1978) has the attributes of being exact in the pro-
pagating region. Since fast Fourier transform algorithms are used, it is fast. How-
ever, it expects constant velocity fields. The deformation introduced in Chap.
(1) may be useful as a preprocessor when the velocity function has sharp

discontinuities.

Snell midpoint coordinates were introduced as a refarded frame (Eq. A.13).
To derive a Stolt algorithm, coordinates need to be redefined as non —refarded.

They are:
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In this system the imaging conditions become s = g, and ' = 0.
The dispersion relation in this non-retarded Snell midpoint frame is:
2puH + H? 1'%
T':‘Po Ung_1'—po 3 B (0.2)
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Stolt imaging is a transformation from (h,t') space to (h,7) space in the
w—k domain. This transformation is achieved changing variables in the following

integral:

.
- i [Towde
fh,1t' =0) = ff Flk,,7=0,0)e ° e‘k"hdlchdw (C.3)
in a way that it resembles a 2 D-fft of the form
Fha) = [ f Flepkde 5 e, dre (C.4)

Using the dispersion relation {C.2), we can solve for w to get
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FIG. C.1. Obliquity function. Snell midpoint coordinates. The horizontal axis is

k
2’;:’. (a) By = 0% (b) By = 179 (c) ¥ = 37% (d) ¥, = 64°.
-
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Next, assuming constant velocity and changing variables in Eq. (C.3) from
w —> k., we obtain

dw

o« . k
f(h‘!T) = _[!F(khakrsz(kh,W)) e if R +k-r‘r) dkT

dkpdk,  (C.6)

where the obliquity factor is given by
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Eq. (C.8) can be implemented into a computer algorithm with a 2-D fast
Fourier transform. We take the data f(h,7=0,t') and Fourier transform it to
F(kj,,w). Then use Eq. (C.3) to map this data into F(k,,k,) space and inverse

dew
dk.,

Fourier transform to F'(h,T). The obliquity factor weights by a cosine-like

factor amplitudes. For arrivals traveling with a fix py H = 0. Here the obliquity
factor is unity. At large propagation angles the obliquity factor goes to zero.
(Fig. C.1). In computer implementations of Stolt's method the obliquity factor is

usually omitted.

Appendix D: Finite difference in (h, T, ) domain.

Finite difference methods (Claerbout, 1978) are appropriate when we need
to apply wave extrapolation operators in space domain rather than wavenumber
domain. In this section we will derive a finite difference operator in (h,7,w)

domain.

In (h,7,e0) space velocity may include variations with angle. This inhomo-
geneity may be used to partially correct errors in finite difference schemes.
Stepout (dip) filters can also be included in the formulation at no extra cost

(Cleerbout, 1976).

There is no representation of the operator of Eq. (3.1) in the space domain.
We need to find approximations for the square root before Fourier transforming
back to space. In chapter (1) we have already study the asymptotic behavior of

this operator and concluded the first order approximation is sufficient.
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The Fresnel approximation (fifteen degree) is found using either Muir's
expansion or Taylor expansion. With this first order approximation we get for Eq.

(3.1

Hz

T ——
2(1 —pgv®

(D.1)

Substituting for 7 and A in terms of k., &, k5, and multiplying by the wave—field

Fk,, k), we get

L

k. F(ky k-, =
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inverse Fourier transforming the k., and k, coordinates gives

w? 8*
8w(1 — pgv?) an?

%—f (h,Tw) = F(h,T0) (D.3)

where i = vV—1. This equation can be directly discretized into a finite difference

formulation.

To add a stepout filtering term it is convenient to replace the frequency —iw

by wg — iw. Velocity may be now a function of h and T,

v(h,T)? 92
8(wg—iw) [1—p&v(h,7)?] 0hZ

%f (h,70) = fr,Tw0) (D.4)

The image is found summing over frequency. This follows from setting ¢t = O

in the inverse Fourier Transform.

In Eq. (D.4) wg determines the numerical viscosity added to the extrapola-
tion scheme. After Claerbout (1976) a value for this parameter w, is found as
follows. Rationalize the denominator in Eq. (D.4); Fourier transform the offset h

coordinate; and assume wgy << w (this last condition for fix velocity v and
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wavenumber k,, assures we are attenuating waves propagating at wide angles).

We obtain

_,Uz ('UJO +7:G))
8(1 - pv?) P

2 f Uep7) = k2 F (opy7c0) (D.5)
The solution of Eq. (D.5) is

_/uz ('LUO + 'Lw)
8(1 — pgv® 0w?

[ kn,r) = f(kp,To,w) exp { k2 (r— To)} (D.6)

From this equation the attenuation factor is given by

f(khs’raw) 'U2 Wp
| = exp{ - k2 (r—1 D.7
| f(khaTOxw) P 8(1 —PE’UZ) &)2 h ( 0) ( )
. . kpv .
Since siny’ = e is the sine of the angle measured about the slanted refer-
ence wavefront, we can rewrite Eq. (D.7) as
f(lch,‘r,co) Wp )
= | = exp{— ————5——sin*% (1 — 1) D.8
I (ke mos00) P 2(1 —pgv?) ¢ 0 (D.8)

Numerical values for wg can be found using this relation.

In this thesis, the discrete operator used for the second partial derivative

was

8% - Onn/ AR

8R? ~ 1+ 064/ 6 0.9

into a finite difference Crank-Nicolson scheme. (Claerbout, 1976).
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