CHAPTER IV

Wave Equation Velocity Estimation

4.1. Introduction.

The acoustic wave equation has been successfully applied to the migration
problem in reflection seismology. For the velocity estimation problem, however,
the wave equation has received limited attention. Wave equation methods have
the important attribute of linearity, a property not found in commonly used ray
tracing techniques. In this chapter our goal is to define a velocity spectrum of

CMP gathers using wave equation techniques.

We require the velocity spectrum to have two fundamental properties. 1) It
must be a space where energy from different events is a local function of veloc-
ity. 2) The space must be defined by invertible transformations. Two other desir-

able properties are resolution and accuracy.

Ray methods are commonly used to estimate velocity. Their application
results in nonlinear transformations on the data. An alternative method of velocity
estimation is the linear mowveout method. An important and elegant feature of
this method is that it follows directly from the Snell midpoint coordinate transfor-
mation. This method is the most natural choice for implementation with the wave

equation.

The linear moveout method estimates velocity using the lateral component of
a reference Snell wavefront. We can measure either RMS or interval velocities
directly in the data. In a stratified earth, with reflectors coinciding with velocity

discontinuities, interval velocity can be measured at any angle, no geometric
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approximations need to be done. RMS velocity estimates as defined with Dix's
equation can also be determined. With this method we can use wide angle reflec-
tions for direct interval velocity estimation. When there are continuous velocity
variations between reflectors, reflection traveltime data alone cannot resolve
uniquely for the velocity function. The problem is underdetermined. Snell coordi-
nates can then be used to decide when velocity inhomogeneities between reflec-

tors are not negligible.

The LMO method does not define a suitable velocity space. Adding an imag-
ing step, however, makes energy become a local function of velocity. Imaged
data in Snell midpoint coordinates will constitute our definition of the linear veloc-
ity spectrum. Given that imaging will be needed to transform to our velocity
space, we describe three methods to image CMP gathers in Snell midpoint coordi-
nates. First, the phase shift method, which is particularly useful to study down-
ward continuation problems. Second is Stolt's method, which is the fastest and
can be complemented with a hyperbolic deformation. (Chapter 111). And last, finite
difference in (h, T, w) space, which allows us to use v{h,T) in the downward con-
tinuation and do stepout filtering concurrent with imaging. Snell midpoint coordi-
nates enable us to use low order wave equation operators for wide propagation
angles. This and the insensitivity of the fifteen degree equation to the back-
ground velocity, makes the finite difference method the preferred choice to

obtain the velocity spectrum.

The wave equation velocity spectrum can also be used in applications requir-

ing model spaces with linearity and locality properties.

4.2. Ray methods in velocity estimation,

Ray methods can be applied in several domains. In this section only methods

in the (h, 7, t) domain will be considered.
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All ray tracing techniques for velocity estimation are based on the asymp-
totic high frequency approximate solution of the wave equation. In a flat earth,
travel-time as function of offset for the nt* arrival is given by
4h?

n+ —— + O(h%) (2.1)
v[%HS,n

tAh) ~ t§
where h is half offset, {; the vertical traveltime and vpys the Root Mean Square

velocity.

Green (1938) was the first to use this equation to estimate velocity. Plot-
ting 4h? wus t? gives straight lines with intercept t§, and slope 1/v8ys . To

find interval velocities, Dix (1955) derived a relationship using vpys

n n—1
'UEHS:n?AtO.i — vBusn ? Atg,

Atgp

(2.2)

Uy =

This equation is widely used. Hajnal and Serada (1981) give a quantitative dis-
cussion of errors in interval velocities computed from Dix's equation. In particular,
interval velocity estimates amplify RMS velocity errors, and are oversensitive to

errors in the normal incidence traveltime estimates.

LePichon et al (1968) proposes a least—square fit to equation (2.1). His
approach is convenient whenever arrival times for particular events can be
picked out automatically. Unfortunately, automatic picking is unreliable in low
amplitude signal environments. The method is limited by the sighal—to—noise ratio

of the data.

The most widely accepted method for defining velocity spectrum is Taner
and Koehler's (1969) technique. They use equation (2.1) to apply a correction

for residual travel time with offset, (VMO correction):
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FIGURE 2.1. Hyperbolic velocity spectrum. (a) CMP gather. (b) Hyperbolic veloci-
ty spectrum. Only the 30 near offsets were used.

hZ
t,(h) —t = A,(h) 8 —F——
n( ) On n( ) Z'UJ%MS,ntU (2.3)

After NMO, first arrival traveltimes should be independent of offset (approxi-
mately if the velocity is not constant). The correction is applied for a trial set of
velocities. For display some semblance measure can be used (Neidell and Taner,
1971; Taner and Koehler, 1968). Figure (2.1) is an example of this technique.
Energy has to be kept to small propagation angles so all assumed approximations
are valid. The method cannot use wide—angle wvelocity —sensitive energy to

improve interval velocity estimates.

May and Straley (1979), include the fourth order term in equation (2.1).
This term gives a first order correction to non—hyperbolicity. The truncated

series needs to be orthogonalized before estimating its coefficients. Since there
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are three coefficients, (zero, second and fourth order), a coherence search needs
to be done in 3-D space. They suggest two searches over 2—D planes, implying
hyperbolic assumption in one plane. This method is particularly useful as a pro-

cessing tool, to improve the NMO correction with better stacking velocities.

The ray methods discussed above have the advantage of insensitivity to
aliasing. However, they have several important restrictions. First, they are
approximations dependent on angle. Error increases with offset where the data
is most sensitive to velocity. Second, ray methods are non—linear; and third, their

resolution is limited by cable truncations and refractions.

4.3. Imaging CMP gathers in Snell midpoint coordinates,

In chapter (1) we learned that slant wave propagation preserves the velocity
information of the data at any depth. Slant downward continuation and imaging
does not alter the velocity information of the data. In this section we describe
imaging CMP gathers in Snell midpoint coordinates. Given a fixed reference Snell
wave, imaging localizes energy to the neighborhood of its corresponding arrival

offset.

The double square root equation in Sneil midpoint coordinates under the stra-

tified flat reflectors assumption (¥ = 0), is given by (figure 3.1)

k. pov [ 2pguH + HE 1'%
I= =g e - |1 - (3.1)
bgv pgv
]Ch’l)
A= 35

To image CMP gathers, first we need to put the data from field coordinates
(s, g, t, 2=0) into Snell midpoint coordinates (k, y, 7=0, {'). The operator (3.1)

is defined in the w—k domain, so we need to Fourier transform the data
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Dispersion relation
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FIGURE 3.1. Slant dispersion relation. Square root equation and approximations.
Snell midpoint coordinates. Y = 0, pov = 0.3

S (y,h,7=0,t'). Omitting the y dependence gives

Flp,7=0,0) = [ [ fh,7=0,8') e *" V¥ gp qp (3.2)

using equation (3.1) the data at any time—depth 7 is given by

Flkp,1,w) = F(ky,7=0,0) exp {i f T w dg} (3.3)
¢

Fourier transforming back to (k, 7, £') space

bt T
:Tz J [ Flien,m=0,0) exp {z J T wdf +ikyh —dot ]dk,, dw
—rn 4]

F(h,t') = 2

(3.4)

It can be checked that when H = 0, that is, when we are looking at energy

that was propagated with initial takeoff angle ¥; = sin™! (pgv, =¢), equation (3.1)
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becomes T = 0. Then equation (3.3) is a null operator. This implies that energy
propagating with fixed p = pg will not be moved by the operator T. This property
enables velocity estimation at any depth, consequently with the image of the

data itself.

To find the image point we need to insert into equation (3.4) an imaging con-
dition. This condition tell us when the wavefield is an image of the reflectivity.
This should happen when we have extrapolated the data to £ = 0. At this point
the energy was reflecting from a given interface. At the reflector the positions of
the shot and geophone coordinates should be coincident s = g. These imaging
conditions translate to £ = 7 in the Snell coordinate system. Substitution into

equation (3.4) gives

flhrt =7) = E%[!F(kh,T=0,w) exp i_ofw(T(f)—1)d£+'iJchh dk, de

(3.5)

This equation is what we need to image CMP gathers in Snell midpoint coordi-

nates.

Example. Wavefield extrapolation in Snell midpoint coordinates can be illustrated
with downward continuation movies. Figures (3.2) and (3.3) show some of the

panels calculated for this purpose.

Figure (3.2) is the py = O case. Downward continuation was done using the
phase shift method. Velocity was v = 1500 m. /s with constant 7—steps. As
expected, as downward continuation proceeds, energy migrates toward
zero—offsets. Past the depth of the reflectors, energy diffracts toward far and
negative offsets. Aliased energy (in refractions area) moves in the wrong direc-

tion. To image the data, the imaging principle requires collection of energy that is
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imaged at each downward continuation step.

In figure (3.3) we have the slanted downward continuation situation. For a
fixed reflector, energy migrates to the particular offset where the reference
Snell wavefront reaches the surface. The LMO correction has the effect of an
anti--alias filter. In the slanted frame there is less aliased energy moving in the

wrong direction.

4.4, Wave equation velocity estimation,

Doherty and Claerbout (1876) introduced the wave equation to velocity
estimation. The main idea was to downward continue the data to the depth of
reflection. At this depth the offset coordinate should be independent of struc-
ture, therefore better velocity estimates could be obtained. They also suggested

velocity estimation in the (2 =0, £, z) plane.

Yilmaz and Chambers (1981) using the wave equation defined a velocity
spectrum with equations (3.1) and (3.4) for py = O by letting velocity v be

another variable in the representation:

J(hrtw) = 4;2 f_f F(kp,7=0,0) eXP[iT(v)wT+z’khh —’iwt]dkh dw
(4.1)
Rl1s2
_ 1 kv
T(w) = 1 - |1 o (4.2)

Their velocity spectrum is the plane f(h =0, 1, t =T1,v)
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f(h =0,T,t:T,'U) = 21—7'['-'[_;!‘ F(kh,)‘rzoyw) exp {’L(T(U)—1)C«)T]dkh dw

(4.3)

This equation is exact in constant velocity media. In this approach the wave
equation stacks the data. The velocity spectrum obtained is similar to Taner and

Koehier's {1968).

An alternative approach is to let the wave equation do NMO without stack.

This was done by Thorson and Yedlin {1980), and Yedlin and Thorson (1981).

Clayton and McMechan (1981) used iterative wavefield inversion to esti-

mate velocity using post—critical reflections and refraction data.

From chapter (1) we know the LMO method has several desirable properties
over ray tracing methods of velocity estimation. Far offset data can be used for
velocity estimation. Choice of p, can be done where the signal—to—noise ratio of
the data is better. The method is linear. Multiple reflections preserve their timing
relationships. However, the method itself does not define a suitable velocity
spectrum; energy remains non—local. The LMO method can be applied at any
depth of observation. At the surface of the earth, where data is collected,
energy has been diffracted and is non—local. Using the wave equation in Snell
midpoint coordinates, we can downward continue the seismic experiment to the
depth and offset where the reference slanted wavefront was reflected. At this
depth the data is imaged and no wave propagation has taken place. Imaging has
the effect of stacking, not to zero offset, but to offsets where reference wave-
fronts with constant ray parameter p, reach the surface. This imaging step adds
robustness to the LMO method in a sense of enhancing the signal—to—noise ratio.

Cable truncation artifacts are not severe because imaging moves most of the
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energy inside the data grid.

We define the linear velocify spectrum of a CMP gather as its image in
Snell midpoint coordinates for a non—vertical reference wavefront. This definition
fulfills the requirement that energy be a a local function of velocity. We analyze
the resolution of our velocity spectrum while referencing downward continuation

algorithms.

Choosing pg. At some point in the process we need to decide what value of the
ray parameter pp to use. A large p, implies wide propagation angles and

increased velocity sensitivity for events with RMS velocity v = 1/ p,. However,

h po p F’

Radial trace

Snell trace

<>

t t’ R T R

FIGURE 4.1. Iterative velocity estimation. Velocity estimation using Stolt imaging
and hyperbolic stretch. The process consists of iteratively applying the two
steps. Stolt imaging in Snell midpoint coordinates transforms the data into a
space where we can read velocities directly from the imaged data. Hyperbolic
stretch uses the current velocity function to map the data into a
quasi—hyperbolic space. This space is more suitable for Stolt imaging.
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with a large p, we cannot estimate high velocities (v > 1/p,). Reference
arrivals are beyond the end of the cable. Small pg will put low velocity events out
of cable too, and since small propagation angles are used, there is a decrease in
sensitivity to velocity. When wave equation imaging is used, to avoid severe end
effects we also would like to keep a symmetry of positive and negative stepouts.
Too small or too large py will enhance the asymmetry of the skewed—hyperbolas
in the data biasing velocity estimates. In practice we probably want to divide
the data into several regions with different py according to some rule; for

instance

Do ™ [0'5 - O'SJ/Umax
But no general rule can be given, the choice of p, is data dependent.

Phase shift method. (Appendix B). This method is exact up to Nyquist frequen-
cies (wide angles) in stratified media. Exact methods are particularly sensitive to
the downward continuation velocity, especially when trying to image wide angle
energy. This sensitivity introduces two problems in our application. First, we can
only expect to know a priori velocity with first order accuracy. Second, even if
we know the correct velocity function, the phase shift method will only image pri-
mary energy. |n some applications the velocity function is multivalued (multiples
interfering with primaries), and we would like our velocity spectrum to give as
good a resolution as possible for all velocities. The main application we have
found for the phase shift method is studying downward continuation in Snell mid-

point coordinates.

Stolt method, (Appendix C). Stolt's method has the advantage of speed. In a
constant velocity medium the method is exact in the propagating region. For

velocity estimation it is possible to reduce sensitivity to the background velocity,
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FIGURE 4.2. Imaged data in Snell coordinates. (a) Marine CMP gather in Snell
midpoint coordinates after hyperbolic deformation. T(z) increases linearly with
depth from the sea—floor to 1 km.. (8v/ 82 = 0.8 s71), (b) Stolt's image, ampli-
tudes squared for display. Most events alignh along the replacement velocity
slope 7 = 1700 m/s. With equation (4.7) we can correct the trial ¥(z)
measuring departures from v. This image defines our linear velocity spectrum —
now energy is a local function of velocity. (pov = 0.255).

restricting the range of angles during the imaging step. Limiting the range of
angles also makes the method more insensitive to multivalued velocity functions
at the expense of blurred images. This is done, remembering that

kh_’U

H = 26 = sin®’

When there are no multiple problems, we can decrease uncertainty in veloc-
ity by combining a deformation to hyperbolic space (chapter lll) with Stolt's imag-
ing. We start imaging the data with constant velocity for a restricted range of

angles, and iterate decreasing the range as uncertainty in the velocity function
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decreases. (Figure 4.1).

When we apply the iterative process, as the velocity function converges to

the true one, Stolt's image aligns itself along the line associated with the back-

ground velocity ¥ according to equation (I-3.16). We need a relation to correct

the original (2 ) from the observed departures of the image from ¥.

Since from equation (I-3.3) there is a one—to—one relationship between

velocity and the slope d7/dh we can write an expansion for the velocity as

function of m. about ¥

d2y
dm?

1
Am + —
=0 2! [

where m, is equal to the slope d 1/ dh.

We can use equation (1-3.3) to find é%

] (Am )P+ -

( dv _ Po
dam. . - 3/2
vy 4q p(}?' + pz_om'u:ﬂ ]

We also have from equation (1-3.3) for m,,_;

—p%n2

P e I

my, =5 = o
Do

(4.4)

(4.5)

(4.6)

From these equations we can find the dv correction. Keeping the linear term only

-~
dv,_.s = U, — ¥ =

This is the desired relation.

(4.7)
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FIGURE 4.3. Fifteen degree imaging. Narrow velocity spectrum. {(a) Synthetic
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squared for display. When trying to res olve narrow velocity variations, we want
pgo close to 1/v,, ., and small variations in the downward continuation velocity.
Compare (c) with (d) and (e) with (f). There is a visible effect out of using
v(h, ), even though it varied only 6.25 % from the mean.
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Figure (4.2) shows a field data example of the proposed iterative process.
Data was preprocessed with a hyperbolic deformation and subsequently imaged
with Stoit's method. In this figure another advantage of the LMO method can be

seen, it is always possible to identify the events being used to measure velocity.
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Fifteen degree finite difference algorithms in (A, T, ©) space have several
advantages. Time derivatives are exact. The fifteen degree equation is insensi-
tive to background velocity within small propagation angles (departures measured
from the reference Snell wave propagation angle). In this domain, stepout filter-

ing concurrent with downward continuation is also possible. (Appendix D).

Since our equations are now in offset space, the possibility of allowing vari-
ations of velocity with offset is open. This may help contravene numerical disper-
sion errors. More important, from equation (I-3.3) we know that Snell wave
arrival positions are function of velocity. For a fixed T we expect to see low
velocity arrivals at offsets smaller than fast velocity arrivals. Keeping in mind
that the fifteen degree approximation correctly images the Fresnel zone of a
given reflection, it should be able to handle multi—valued velocity functions.
When there are two simultaneous arrivals at zero offset in the data, we should be
able to focus both events if the Fresnel zone of both reflectors decouples within
cable boundaries at large offsets. We could then use low velocities at small
offsets and high velocities at large offsets. When chosing p, these arguments

should be kept in mind. Energy outside the Fresnel zone can be filtered out.

The fifteen degree equation in Snell midpoint coordinates is given by

v(h, 7)? il
8(wg —iw) [1 —pu(h,P?] B8RP

%f(h,‘r,w) = JACEAD) (4.8)

where wy, is the stepout filtering parameter.

For a choice of v(h, 7) we can use equation (1-3.3) as

v¥(h, ) = L

(4.9)

Po |{Po t+

r
h

o[~
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Figure (1-3.2) shows how this equation dictates the velocity distribution in (h, 7)

space.

in the fifteen degree equation (4.8) v(h, 7) is expected to be an interval

velocity, while equation (4.9) defines RMS velocities. The fifteen degree equa-

tion is insensitive to this distinction. To justify the use of equation (4.9), con-

sider an event at time—depth 7. We need to extrapolate 7 sec to reach the

depth of the event. Assuming only T dependence in velocity*, the coefficient of
equation (4.8) from its finite difference scheme is
v (1) AT

af{r) = 16 w[1 — p§ v?(1)]AR? (4.10)

The cumulative effect of downward continuation is given by the integral

T ~ 1 T 'Uz(é)
Jate) de = TYVYE { T eE ot X (4.11)

0

we recognize the vpys expression of equation (1—3.13); define @ as

T

_ _ T Vs
7= Jatodt = e —p& vhus (412)

Therefore with the fifteen degree equation there is no difference in extrapolating
a single T step with @ or extrapolating continuously with a.(7). This insensitivity
was exploited to estimate velocity in the (h =0, f, 2) plane for pg =0 by
Doherty and Cleerbout (1974). Unfortunately their analysis cannot be extended
to po Z 0. The plane (h =hg, t,z) where energy focuses is velocity dependent.

In addition, this plane is non—unique when velocity is multivalued.

*in the nelghborhood where the fifteen degree wave equation Is valld ’U(h., 7 ~ (7).
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FIGURE 4.5. Fifteen degree imaging. Field data. Wide velocity spectrum. (a)
CMP gather. (b) LMO gather pg = 1/ 6000 sec/m . (c) Constant velocity
imaging. ¥ = 2000 m/sec. (d) v(h,T) imaging. Velocity was allowed to

vary with offset according to equation (4.9) in the range
1200 m/sec <= ¥ = 2800 m/sec. (e) Same as (c) with
wqo = 8msec”l. (f) Same as (d) with wy = 8msec™l. This data set has

strong multiple refractions that give strong interference with the image in
both constant and variable velocity imaging. With constant velocity imaging
the image is not well defined for the first second of data. Variable velocity
defines it better. However variable velocity has strong unmigrated high
stepout events in the low velocity zone. With stepout filtering is added, the
quality of the image is slightly better when v{h, 7) was used.
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~1, (f) Same as (d) with wg = 8msec™!. For this window of

as
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FIGURE 4.6. Fifteen degree imaging. Field data. Narrow velocity spectrum.
= 8msec

(a) CMP gather. (b) LMO gather p; = 1/ 2667 sec/m . (c) Constant velo-
ing without numerical viscosity does not give good resolution. Stepout filter-

ing and v(h, 1) improve the image quality. In (f) the spectrum has resolved
peg-leg multiples aligned at water slope. They image below primary arrivals.

city imaging.
1400 m / sec

Wy
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Figure (4.3) is an example of imaging to resolve two simultaneous arrivals.
The synthetic shows two events with RMS velocities differing by 5%. The refer-
ence ray parameter should be chosen so the stationary region of LMO corrected
events separates according to velocity. We also need to restrict the range of
variation of the downward continuation velocity. The figure illustrates a problem
trying to get an image with large po. When the energy distribution is not sym-
metric with stepout, the maximum cluster of energy will migrate as downward con-
tinuation proceeds. When imaging, the maximum—energy locations will not neces-
sarily coincide with the stationary location of events, this can result in a bias

estimating velocity. Stepout filtering partially solves this problem.

Figure (4.4) is an example of imaging to resolve wide velocity variations. In
this application the range of variations of w(h, 1) is broader than in the previous
example. Imaging gives a sharper focus when v (h, 7) is used instead of constant

downward continuation velocity.

Figure (4.5) is an example with field data. The spectrum is obtained for two
seconds of data. The data set has particularly strong multiple refractions. The
image illustrates how the LMO method separates events with velocity. Refrac-
tions remain at large offsets and can easily be removed with stepout filtering, this
way they will not interfere in the velocity estimation process. Figure (4.6) is the
example with the first second of data. The filtered image is better when v(h, 1)

is used. Some peg-—leg multiples have been resolved.

The image data contains several focused events that are not distinguishable
in the original diffracted data. A convenient way to study the source of focused
energy is with a movie displaying downward continuation and imaging simuitane-
ously. Figures (4.7) and (4.8) display some of the movie frames. Each frame has

been downward continued a given At step replacing downward continued data
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with their image after reaching their corresponding time—depth 7. As downward
continuation proceeds the high stepout energy from the multiple reflected refrac-
tions was attenuated numerically so it does not interfere with reflected energy
images. In the diffracted data it is difficult to identify the stationary zones of
hyperboloids corresponding to multiple energy. Following the downward continua-
tion it is possible to see how events separate. This data set has strong peg—leg
multiples that have been separated and focused from the primaries. (Peg—leg
multiples align at water velocity slope below their associated primary). v(h,T)

imaging gives better separation than constant velocity imaging.
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FIGURE 4.7. Downward continuation and imaging. Constant velocity. Each
panel displays downward continued and imaged data at AT ~ 0.084 sec. in-
crements. Downward continued data is replaced by its image when its
time—depth T is reached. Folliowing the downward continuation makes it
easier to identify the source diffraction of focused energy. In the original
diffracted data it is difficult to separate primary energy from sea—floor and
peg—ieg multiples. During imaging, multiple reflected refractions are filtered
out so they do not interfere with reflection images. The final image has
separated several peg—leg multiples undistinguishable in the diffracted data.
LMO: py = 1/ 2500 sec/m . Constant velocity v = 1800 m / sec imaging.
wy = 8msec’l
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FIGURE 4.8. Downward continuation and imaging. v(h,7). This figure is simi-
lar to Figure (4.7) using v(h, 7). For near offsets the velocity is low so we
cannot get a good image. In the far offsets there is some improvement in im-
aging. There is better separation between primary and multiple energy com-
pared to constant velocity imaging. LMO: pg = 1/ 2600 sec/m . v(h,7) im-
aging; velocity allowed to vary with offset accordmg to equation (4.9) in the
range 1400 m/sec < U < 2200 m/sec. wp = 8msec ..



