1.3 Four Wide-Angle Migration Methods!

The four methods of migration of reflection seismic data that are
described here may all be found in modern production environments. As
a group they are all strong in their ability to handle wide-angle rays. As
a group they are all weak in their ability to deal with lateral velocity vari-
ation.

Traveltime Depth

Conceptually, the output of a migration program is a picture in the
(z,2)-plane. In practice the vertical axis is almost never depth z; itis
the vertical traveltime 7. In a constant-velocity earth the time and the
depth are related by a simple scale factor. The meaning of the scale fac-
tor is that the (x,7)-plane has a vertical exaggeration compared to the
(x,z)-plane. In reconnaissance work, the vertical is often exaggerated
by about a factor of five. By the time prospects have been narrowed to
the point where a drill site is being selected, the vertical exaggeration
factor in use is likely to be about unity (no exaggeration).

The traveltime depth T is usually defined to include both the time
for the wave going down and for the wave coming up. The factor of 2 thus
introduced quickly disappears into the rock velocity. Recall that zero-
offset data sections are generally interpreted in terms of exploding-
reflector wave fields. To make the correspondence, the rock velocity is
halved for the wave analysis:
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The first task in interpretation of seismic data is to figure out the
approximate numerical value of the vertical exaggeration. It is doubtful
that it will be printed on the data header for the simple reason that it is
not exactly known. This is because the seismic velocity is not exactly
known. Furthermore, the velocity usually increases with depth, which
means that the vertical exaggeration decreases with depth. For
velocity-stratified media, we may write the time-to-depth conversion for-
mula
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1 pdapted from SEP-25, pp 208-220.

Hyperbola Summation and Semicircle Superposition Methods

These methods are the most comprehensible of all known methods.
Conceptually, at least, they seem to predate the use of computers. Com-
puter implementations of these methods seem to predate the
exploding-reflector concept, and they certainly predate the idea of
downward extrapolating a wave field with exp(ik,2) followed by imaging
at £=0.

First of all, recall the equation for a conic section, a circle in (z,z)-
space or a hyperbola in (z,t)-space. With traveltime depth 7, we get

22 + 2% = »7¢? (32)
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Figure 1 illustrates the semicircle-superposition method. Taking the
data field to contain a few impulse functions, then the output should be a
superposition of the appropriate semicircles. Each semicircle denotes
the spherical reflector earth model, which would be implied by a dataset
with a single pulse. Taking the data field to be a thousand seismograms
of a thousand points each, then the output is a superposition of a million
semicircles. Since a seismogram has both positive and negative polari-
ties, about half the semicircles will be superposed with negative polari-
ties. The resulting superposition could look like almost anything.
Indeed, the semicircles might mutually destroy one another almost
everywhere except at one isolated impulse in (z,7)-space. Should this
happen you might rightly suspect that the input data section in (z,t)-
space is a Huygens secondary source, namely energy concentrated along
a hyperbola. This leads us to the hyperbola summation method.

The hyperbola summation method of migration is depicted in figure
2. The idea is to create one point in (z,7)-space at a time, unlike the
semicircle method, where each point in (z,7)-space is built up bit by bit
as the one million semicircles are stacked together. To create one fixed
point in the output (z,7)-space, a hyperbola, equation (3b), is imagined
set down with its top upon the corresponding position of (z,t)-space. All
data values touching the hyperbola are added together to produce a
value for the output at the appropriate place in {z,7)-space. In the
same way, all other locations in (z,7)-space are filled.

The opposite of data processing, building models from data, is con-
structing synthetic data from models. By means of a slight modification,
the above two processing programs can be converted to modeling
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FIG. 1. [from Schneider, W. A., 1971, Developments in seismic data Ero-
cessing and analysis (1968-1970): Geophysics, v. 36, no. 6, p. 1043-1073]
The -------- process may be described in numerous ways; however, two
ver"iy simple and equally valid representations are indicated in figures 1
and 2. own here is a representation of the process in terms of what
happens to a single input trace plotted in depth (time may also be used)
midway between its source and receiver. Each amplitude value of this
trace 1s mapped into the subsurface along a curve representing the loci
of points for which the traveltime from source to reflection point to
receiver is constant. If the velocity is constant, these curves are ellipses
with source and receiver as foci. The picture produced by this operation
is sim}%ly a wavefront chart modulated by the trace amplitude informa-
tion. This clearly is not a useful image in itself, but when the map is
composited with similar maps from neighboring traces (and common-
depth-point traces of different offsets), useful subsurface images are
produced by virtue of constructive and destructive interference between
wavefronts in the classical Huygens sense. For example, wavefronts from
neighboring traces will all intersect on a diffraction source, adding con-
structively to Eroduce an image of the diffractor in the form of a high-
amplitude blob whose (z,z) resolution is controlled by the pulse
bandwidth and the horizontal aperture of the array of neighboring iraces
composited. For a reflecting surface, on the other hand, wavefronts
from adjacent traces are tangent to the surface and produce an image of
the reflector by constructive interference of overﬁ)apping portions of
adjacent wavefronts. In subsurface regions devoid of reflecting and
scattering bodies, the wavefronts tend to cancel by random addition.

programs. Instead of hyperbola summation or semicircle superposition,
one does hyperbola superposition or semicircle summation. You might
wonder whether the processing programs really are the inverse to the
modeling programs. You might also wonder whether the two different
methods of modeling or processing are equivalent. If they differ, which

-
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FIG. 2. {from Schneider, 1971 - see figure 1 caption for complete refer-
ence) A second description of the -------— process is provided here. The
rocess is represented in terms of how an output trace is developed
rom an ensemble of input traces, shown as CDP-stacked traces in the
upper half of the figure. The output in the lower half reflects how each
amplitude value at (z,z) is obtained by summing input amplitudes along
the traveltime curve shown. This curve defines a diffraction hyperbola,
and if a diffraction source existed in the subsurface at the output point
shown, a large amplitude would result. The process also works for
reflectors since we magf regard a reflector as a continuum of diffracting
elements whose individual images merge to produce a smooth continu-
ous boundary.

is better? Clearly some facts which have been glossed over are (1) the
angle-dependence of amplitude (obliquity function) of the Huygens
waveform, (2) spherical spreading of energy, and (3) the phase shift on
the Huygens waveform. Actually, results are reasonably good even
without these. Since proper migration is an all-pass filter, the inverse to
the filter should be simply its time reverse. So cross-correlating the
data (a superposition of hyperbolas) with another hyperbola should
result in a filter that is a pretty good inverse to the filter which is a delta
function on a hyperbola.

As later methods of migration were developed, the deficiencies of the
earlier methods became more clearly understood, and were largely
correctable by careful implementation. One advantage of the later
methods was that they implemented true all-pass filters. Such
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migrations preserve the general appearance of the data. This suggests
restoration of high frequencies, which tend to be destroyed by hyper-
bolic integrations. Work by Trorey, Schneider, Hilterman, and possibly
others with the Kirchoff diffraction integral suggested quantitative
means of bringing hyperbola methods into agreement with other
methods, at least for constant velocity. Common terminology nowadays
is to refer to any hyperbola or semicircular method as a Kirchoff
method, although, strictly speaking, the Kirchoff integral applies only in
the constant-velocity case.

Spatial Aliasing

The situation when data is insufficiently sampled on the space axis is
called spatial aliasing. This difficulty is so universal, that all all migra-
tion methods must consider it. It is commonly agreed that data should
be sampled at more than about two points per wavelength. Otherwise
the wave arrival direction becomes ambiguous. Figure 3 shows some
synthetic data which is sampled insufficiently densely along the z-axis.

You can see that the problem becomes more acute at high frequen-
cies and steep dips. There seems to be no automatic method for migrat-
ing data which is spatially aliased (a common problem). In such cases,
human beings can usually do better than machines, because of their
ability to recognized the true slopes. But when the data is adequately
sampled, then computer migration of data based on the wave equation
gives better results than manual methods. Contemporary surveys are
usually adequately sampled along the line of the survey. But there is
often considerable difficulty in the perpendicular direction.

The hyperbola-sum-type methods run the risk that the migration
operator itself can become spatially aliased. This is a situation to be
avoided by means of careful implementation. The first thing to realize is
that you should be integrating along a hyperbolic trajectory. A summa-
tion incorporating only one point per trace is a poor approximation. It is
better to incorporate more points, as depicted in figure 4. The likelihood
of getting an aliased operator increases where the hyperbola is steep-
sloped. In production examples, an aliased operator often stands out on
the seafloor reflection where — although it may be perfectly flat — it
acquires a noisy precursor from the steep-flanked hyperbola of the water
path.
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FIG. 3. Insufficient spatial sampling of synthetic data. To better per-
ceive the ambiguity of arrival angle, view the figures at a grazing angle
from the side.

FIG. 4. For a low velocity hyperbola,
integration will require more than one
point per channel.

LI

The Phase-Shift Method (Gazdag)

The phase-shift method proceeds straightforwardly by extrapolating
downward with exp(ik,z) and subsequently evaluating the wave field at
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t=0 (that is, when the reflectors explode). Of all the wide-angle methods
it most easily incorporates depth variation in velocity. Even the phase
angle and obliquity function are correctly included, automatically.
Unlike Kirchoff methods, there is no danger of aliasing the operator.
This method is also quite comprehensible.

To start with, you need to do a two-dimensional Fourier transform
(RD-FT) of your dataset. Some practical details about 2D-FT are
described in a later section. Then you push the transformed data values,
all in the {w,k;)-plane, downward to a depth Az by means of multiplica-

tion by
2
vk
w

otket2

172
= i 9
= exp{ i Az] (4)
Ordinarily the time-sample interval At for the output migrated section
will be chosen equal to the time-sample rate of the input data (often 4
ms). Thus, choosing the depth Az = v AT, the downward-extrapolation

operator for a single time unit is
R1r2
vk

Next is the task of imaging. At each depth we imagine an inverse
Fourier transform followed by selection of the value at #=0. Luckily,
only the Fourier transform at one point, =0, is needed, so that is all
that need be computed. It is especially easy since the value at £=0 is
merely a summation of each w frequency component. Finally, inverse
Fourier transform k, to z. The overall migration process may be sum-
marized as follows.

Plwk,) = FT[p(t.x)]

exp[-—ico AT

For 7 =A7, 2A1, ..., end of time axis on seismogram f{
For all &  §
Forall w

Plwk,) = Plwk,)exp[—1 wATcost(w,k, )]
}
Image (k,,7) = 3 P
; w
Image(z,7) = FT[Image (k,.,7)]
]

One hardly ever knows the velocity very precisely, so although the
velocity may be increasing fairly steadily with depth, it is often approxi-
mated as constant in about 20 layers, rather than slowly changing at
each of the thousand or so points on a seismogram. The advantage of
velocity being constant in layers is one of economy. Once the square
root and the sines and cosines in (5) have been computed, then the com-
plex multiplier (5) can be re-used for all 20 layers.

The Stolt Method

On most computers the Stolt method of migration is the fastest
method, by a considerable margin. For many applications, this will be
the most important attribute to consider. In a constant-velocity earth
the Huygens wave source is treated exactly correctly. Like the other
methods, this migration method can be reversed and made into a model-
ing program. One drawback, a matter of principle, is that the method
does not handle depth variation in velocity. This drawback is largely
offset in practice by the existence of an approximate correction by an
axis-stretching procedure. A practical drawback is the periodicity of all
the Fourier transforms. In principle this is no problem at all, being solv-
able by a sufficient surrounding of the data by zeros. A single line sketch
of the Stolt method is this:

P(z,t) » Plk, ) » P

2 172
ky k, = ["-’_2_.]‘:12] - P(z,2)
v
To see why this works, begin with the input-output relation for down-
ward extrapolation of wave fields:
Plok, z) = e*** p(uk,, 2=0) (6)
Perform a two-dimensional inverse Fourier transform:
p(tz,z) = ff eik’z_wt tikg2 P(w.k,.0) dw dk,,

Apply the idea that the image at (z,z) isthe exploding reflector wave at
time t=0:

Image(z,2) = ff et He® eik‘(m'k“)2 Plwk,,0) dw dk, (7)

Equation (7) states the answer we want, but it is in a very unattrac-
tive form. The computational effort implied by (7) is that a two dimen-
sional integration must be done for each and every z-level. The Stolt
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procedure will be to convert the three dimensional calculation implied
by (7) to a single two dimensional Fourier transform.

So far we have done nothing to specify that we have an upgoing wave
instead of a downgoing wave. The direction of the wave is defined by the
relationship of z and ¢t required to keep the phase constant in the
expression exp(-iwt +ik,z). If @ were always positive, then +k,
would always refer to a downgoing wave and —k, to an upgoing wave.
We need negative frequencies o as well as positive frequencies in order
to describe waves that have real values (not complex). So the proper
description for a downgoing wave is that the signs of @ and k, must
agree. For an upgoing wave it is the reverse. With this clarification we
prepare to change the integration variable in (7) from  to k,.

_Sgn(kz) vV Ik::z + kzzl (Ba)

W =
do k,
= —sgnlk,) v ————- (8b)
dk, RSV Y Y
dow —v Ikzl

= (8c)

de,  +\kE k2

Now we will introduce (8) into (7) including also a minus sign so that the
integration on k, may be taken from minus infinity to plus infinity as
was the integration on w.

vk, |
kZ+kf

x 2

Image(z z) = [ [e®+* ¥ % | plo(k, k, )k, 0] dk, dk,  (9)

Equation (9) states the final result as a two-dimensional inverse Fourier
transform. The Stolt migration method is a direct implementation of
(9). The steps of the algorithm are:

1. Double Fourier transform data from p(t,z,0) to P(w,k..,0).
2. Reinterpolate P onto a new mesh so that it is a function of &,
and k,. Multiply P by the scale factor (which has the interpre-

tation cosdv).

3. Inverse Fourier transform to (z,z)-space.

Samples of Stolt migration of impulses are shown in figure 5. You can
see the expected semi-circular smiles. You can also see a semicircular
frown hanging from the bottom of each semicircle. The worst frown is on
the deepest spike. What seems to be happening is that our semicircular
mirrors are actually circular, with centers not only at the earth’'s sur-
face z=0 but also at the bottom of the model z=z,,,. The obvious
practical solution is to stay away from the bottom of the model.

N, < -
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FIG. 5. Response of Stolt method to data with impulses. Semicircles are
seen, along with computation artifacts.

It seems that we must use an extraordinary amount of zero padding
on the time axis. To keep memory costs reasonable, the algorithm can
be reorganized. We need storage space for a long vector, say wu(t),
(about four times as much as for a typical seismogram). If you have an
array processor, that is where this vector belongs. The Stolt algorithm
becomes:
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Plkgt) = FT{p(z.t)]

For all k, §
u(t) = Plkg.t)
Pad out remaining length of # with zeros.
Uw) = FTu(t)]

Ulk,) = Ul-sgn(k,)v k2 + k2]

u(z) = FT[U'(k,)]
Plky.z) = u(z)
J

p(z.z} = FT[P(k;.2)]

vlkzl

Even this improved algorithm is not trouble-free. The periodicity in z
still requires padding with lots of zeros on z.

Sensitivity of Migration to Velocity Error

Data Model Migrated Titme Section
x . z x
v/ vif,
Vg 2 V3
. os
t z T

FIG. 6. Migration of a data impulse as a function of velocity.

Recall that migrated data is displayed as a time section. Figure 6
shows how the migration impulse response depends on velocity. Arbi-
trary velocity error makes no difference when processing horizontal bed-
ding. Velocity error sensitivity increases with angle up to 90 degrees,
where the accuracy needed to avoid destructive interference is in the
ratio of half a seismic wavelength divided by the traveltime. Significant
timing error may be assumed to be about a half-wavelength. Observa-
tionally the ratio of traveltime to wavelength is usually a hundred or less.
[Exceptions occur (1) if much of the path is in water or (2) at time
depths greater than about four seconds.] Figure 7 illustrates that the

velocity accuracy required for 90-degree migration is aboul 1%. For 45-
degree migration velocity error could be larger by the square root of 2.

N

FIG 7. Timing error of the wrong
velocity increases with angle.

timing error

Velocities are rarely known this accurately. Is there any value in
processing for which erroneous time shifts exceed a half-wavelength?

Subjective Comparison and Evaluation of Methods

The three basic methods of migration in this section are compared
subjectively in table 1.

Finally, the perspective of later chapters allows some remarks on the
overall quality of the wide-angle methods as a group. Their greatest
weakness is their near inability to deal with lateral velocity variation.
Their greatest strength, the wide-angle capability, is lessened in value by
the weakness of other links in the data collection and processing chain.

Namely:

1. Shot-to-geophone offset angles are commonly large but ignored.
A CDP stack is not a zero-offset section.

2. Why process to the very wide angles seen in the survey line when
even tiny angles perpendicular to the line are being ignored?

3. Data is often insufficiently densely sampled to represent steeply
dipping data without aliasing.

4. Accuracy in knowledge of velocity is seldom sufficient to justify
processing to wide angles.

EXERCISES
1. Define the computer program for modeling with the phase shift
method -- that is, create the surface data P(z,z=0,t) from some
exploding reflector distribution P{z,z,t=0}.
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descending further. Thus information could never get to negative

Hyperbola Sum Phase Shift Stolt time to "wrap-around”’. Indicate how the program should be
Sernicircle Sup. i changed.
Speed slow average very fast
Memory organiza- awkward good good
tion
v(z) ray tracing easily approximately by
stretching
wide angle? Beware of data | Beware of data | Beware of data
alias and opera- | alias. alias.
tor alias.
Correct phase and || possible with | easily for any for const v
obliquity? some effort for | v(z)
const v
wraparound noise? no worst on z, but | {(z,z,t) a prob-
reasonable lem
v(z) Production pro- | approximately by | no known pro-
grams have seri- | iteration and | gram
ous pitfalls. interpolation
Side  boundaries Excellent Poor Poor
and irregular
spacing

TABLE 1. Subjective comparison of three wide-angle migration methods.

2. Define the computer program for the inverse to the Stolt algorithm -
that is, create synthetic data from a given model.

3. Redesign the computer program of the phase shift migration method
to save unnecessary computation when wv(z) is constant over a
range of z.

4. The phase shift method tends to produce a migration which is
periodic with 2z because of the periodicity of the Fourier transform
over t. Ordinarily, this is not troublesome because we do not look at
large z. The up-coming wave at great depth should be zero before
t=0. Kjartansson pointed out that periodicity in 2z could be avoided
if the wave at £=0 is subtracted from the wavefield before



