1.2 Wave Extrapolation As a 2-D Filter!

In Fourier analysis we are familiar with the idea that an impulse
function (delta function) can be constructed by superposition of
sinusoids (or complex exponentials). In the study of time series this con-
struction is used for the impulse response of a filter. In the study of
functions of space, it is used to make a physical point source.

Taking time and space together, Fourier components can be inter-
preted as monochromatic waves. Physical optics (and with it refiection
seismology) becomes an extension to filter theory. In this section we
learn the mathematical form, in Fourier space, of the Huygen's secon-
dary source. It is a two-dimensional (2-D) filter for spatial extrapolation
of wave fields.

Rays and Fronts

Figure 1 depicts a ray moving down into the earth at an angle ¥
from the vertical. Perpendicular to the ray is a wavefront. By elemen-
tary geometry the angle between the wavefront and the earth’s surface
is also ¥. The ray increases its length at a speed v. The speed which is
observable on the earth’s surface is the intercept of the wavefront with
the earth's surface. This speed, namely v/sin®, is faster than wv.
Likewise, the speed of the intercept of the wavefront and the vertical
axis is v/ cos®¥. A mathematical expression for a straight line, like that
shown to be the wavefront in figure 1 is

z = zg—z tan? ' (1)
In this expression 2z is the intercept between the wavefront and

the vertical axis. To make the intercept move downward, we replace it
by the appropriate velocity times time

z = v—t——ztanv )
cos?¥

Solving for time we get
z T .
= £ + = 3
t(zx,2) cos sin® (3)

Equation (3) tells us what time the wavefront will pass any particular
location (z,z). The expression for an arbitrary shifted waveform is
J (¢ —tg). Using (3) to define the time shift ¢, we have an expression

1 Adapted from SEP-25, pp 203-208.
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FIG. 1. Downgoing ray and wavefront.

for a wave field which is some waveform moving on a ray.

moving wave field = f|t — —f}—sinl? - Z—cosﬂ (4)

Waves in Fourier Space

Arbitrary functions can be made from the superposition of sinusoids.
Sinusoids and complex exponentials commonly occur. One reason they
occur is because they are the solutions to linear partial differential equa-
tions (PDE’s) with constant coefficients. The PDE’s arise because most
laws of physics are expressible as PDE’s.

Specializing the arbitrary function in equation (4) to be a cosine
function of negative argument times frequency w, we have

cosine on a ray = COS

w[ Z sin® + Zcos® — ¢ ] l (5)
v v

Using Fourier integrals on time functions we encounter the Fourier ker-
nel exp(—iwt). To use Fourier integrals on the space-axis =z we need to
define the spatial angular frequency. Since we will ultimately encounter
quite a few different space axes (three for shot, three for geophone, also
the midpoint and ofIset), we will adopt the convention of using a sub-
script on the letter k to denote the axis being Fourier transformed. So
k, is the angular spatial frequency on the =z-axis and exp(ik ) isits
Fourier kernel. For each axis and Fourier kernel there is the queslion of
the choice of the sign of 4. The sign choice is discussed later in more
detail, but essentially we will choose the sign convention of most physics

books, namely, to agree with equation (5), which is a wave moving in the
positive direction along the space axes. Thus the Fourier kernel for
(z,z.t)-space will be taken to be
Fourier kernel = etka® gtHa® it expli(kyz + k,z — wt)] (6)
Now for the whistles, bells, and trumpets. Comparing (5) and {6) we
learn how to relate physical angles to velocity and Fourier components.
These relations should be memorized!

Angles and Fourier Components

vk vk
z cos® = z

sin®v =

)

Equally important is what comes next. We may insert the angle
definitions into the familiar relation sin®9 + cos®® = 1. This gives a
most important relationship, known as the dispersion relation of the
scaler wave equation.

K2+ kR = - v (8)

We'll encounter dispersion relations and the scalar wave equation later.
The reason why (8) is so important is that it enables us to make the dis-
tinction between an arbitrary function and an apparently chaotic func-
tion which actually is a wave field. Take any function p(t,z,z). Fourier
transform it to P(w,k;.k,). Look in the (w,ky .k, )-volume for any non-
vanishing values of P. You will have a wave field if and only if all non-
vanishing P have coordinates which satisfy (8). Even better, in practice
we often know the (z.f)-dependence at z=0, but we do not know the z-
dependence. Then we find the z-dependence by the assumption that we
have a wavefield, so the z-dependence is inferred from (8).
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Migration Improves Horizontal Resolution

In principle, migration converts hyperbolas Lo points. In practice, we
don't get a point. We get a focus. A focus has measurable dimensions.
Migration is said to be "good” because it increascs spatial resolution. It
squeezes a large hyperbola down to a tiny focus. To quantitatively
describe the improvement of migration, we need to discuss the size of

the hyperbola and the size of the focus. Figure 2 shows various ways of
measuring the size of a hyperbola.
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FIG. 2. (Gonzalez) Measurements of width parameters of a hyperbola.

Since the hyperbola is a rather impulsive arrival, we can say that the
w-bandwidth of the hyperbola is approximately given by the zero cross-
ings on the time axis of the main energy burst. I'll mention 50 Hz as a
typical value, though you could encounter values four times higher or
four times lower. Knowledge of a seismic velocity enables conversion to
a depth resolving power. Tll mention 3 km/sec though you could
encounter velocities four times greater and four times less. Halving the
velocity, to account for two way lravel time, we arrive at a depth
wavelength of v/ f = 30 meters. Whether seismic resolution should be
taken as a half wavelength (15 meters) or a smaller value is an issue
which involves signal-to-noise considerations outside our present study.

Now for the lateral resolution. First we need to measure the "width'”
of the hyperbola and then the width of the focus. Figure 2 shows three
widths. The widest, Az, includes about three quarters of the energy in
the hyperbola. Next is the width Az, called the Fresnel Zone. It is
measured across the hyperbola at the time when the first arrival has just
changed polarity. Third is the smallest measurable width, found far out
on a flank. This width, Azj, is the shortest horizontal wavelength to be
found. Because the hyperbola is an impulsive arrival, we can take this
value, Azz to be indicative of the bandwidth of the spatial k, spec-
trum. How small a focus can migration make? It will be limited by the
available bandwidth in the k, spectrum. We may simply conclude that
the size of the focus will be about the same as Az (Resolution is the
study of the size of error, and it is not awfully useful to be precise about
the error in the error.)

What is the meaning of the Fresnel width Az, ? Suppose you and a
friend are on opposite sides of a wall (Berlin, maybe). You are both some
distance from the wall and begin shouting to each other through a large
hole. How does the loudness of the sound depend on the size of the hole
AX ? It is not obvious, but it is well known, both theoretically, and
experimentally, that holes larger than the Fresnel zone cause little
attenuation, but smaller holes restrict the sound in proportion to their
size.

Wave propagation is a convolutional filter which smears information
from a region Az, along a reflector (or Az; in the subsurface) to a
point on the surface. Migration, the reverse of wave propagation, is the
deconvolution operation. The final amount of lateral resolution is limited
by the spatial bandwidth of the data.

A basic fact of seismology is the resolution limitation caused the
increase with depth of the seismic velocity. What happens is that as the
waves get deeper into the earth, their wavelengths get longer because of
the increasing velocity. The situation with vertical resolution is simply
this: Longer wavelengths, less resolution. The situation with horizontal
resolution is similar, but the horizontal wavelength is directly measur-
able at the earth surface. Figure 3 shows this. Hyperboloids are shown
from shallow and deep scatterers. Shallow hyperbolas have steep
asymptotes. Deep scatterers have less steep asymptotes. So you see
their horizontal wavelengths are longer. Thus you lose lateral spatial
resolution with depth. Compounding the above reason for decreasing
resolution is the loss of high frequency energy at late travel time.
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FIG. 3. Hyperboloids for an earth of velocity increasing with depth.
Observable lateral wavelengths get longer with increasing depth. Thus
lateral resolving power decreases with depth.

TwoDimensional Fourier Transform

Before going any further, let us review some basic facts about two-
dimensional Fourier transformation. A two-dimensional function is
represented in a computer as numerical values in a matrix. A one-
dimensional Fourier transform in a computer is an operation on a vec-
tor. A two-dimensional Fourier transform may be accomplished by a
sequence of one-dimensional Fourier transforms. You may first
transform each column vector of the matrix and then transform each
row vector of the matrix. Alternately you may first do the rows and later
do the columns. We can diagram the calculation as follows:

ptz) < P(tk,)

7 I

Ploz) < Plwk,)

An example of these transformations on some very typical deep ocean
data is shown in figure 4.

p(t.z) P(t k)

Plw.z) Plwky)

I ’%ﬁ

FIG. 4. A deep marine data sel p(t,z) and the real part of various
Fourier transforms of it. Because of the long travel time through the
water, the time axis does not begin at £=0.
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In the deep ocean, sediments are fine grained and deposit slowly in
flat, regular, horizontal beds. Lack of permeable rocks like sandstone
severely reduces the potential for petroleum production from the deep
ocean. The fine grained shales overlay irregular, igneous, basement
rocks. The plot of P(t,k,) shows the lateral continuity of the sediments



by the strong spectrum at low kg . The igneous rocks show a k, spec-
trum which drops off so slowly with k, that the deep data are seen to be
somewhat spatially aliased. The plot of P(w,z) shows that the data con-
tains no low frequency energy. Atlarge w the energy is not dropping off
as fast as one might like which is indicative of temporal frequency alias-
ing. This aliasing is also apparent in the plot of p(t.xz) by the steplike
appearance of the sea floor arrival. The dip of the seafloor shows up in
(w.k, )-space by the energy crossing the origin at an angle.

A notational problem on the fore-mentioned diagram is that we can-
not maintain the usual convention of using a lower case letter for the
domain of physical space and an upper case letter for the Fourier
domain, because the convention cannot include the mixed objects
P(t.k;) and P(w.zx) Rather than invent some new notation it seems
best to let the reader use the context to cope with this notational prob-
lem. The arguments of the function must help serve as the name of the
function.

Altogether, the two-dimensional Fourier transform of a collection of
seismograms involves only twice as much computation as the one-
dimensional Fourier transform of each seismogram. This is lucky. Let
us write a few equations to establish that the asserted procedure does
indeed do a two-dimensional Fourier transform. First of all we express
the idea that any function of z and f may be expressed as a superposi-
tion of sinusoidal functions

p(tz) = [[e 5T plok,) do dk, (9)

The kernel in this inverse Fourier transform has the form of a wave mov-
ing in the plus z-direction. Likewise, in the Jorward Fourier transform,
the sign of bath exponentials changes, preserving the fact that the ker-
nel is a wave moving positively. The scale factor and the infinite limits
are omitted as a matter of convenience. (The limits and scale both differ
from the discrete computation, so why bother?) Now let us nest the dou-
ble integration in a form which indicates that the temporal transforms
are done first (inside):

ptx) = [eF” {fe"“"t Plwky) dw]djcz = [e*" Pt k,) dk,

The quantity in brackets indicates temporal Fourier transforms being
done for each and every k,. Alternately, we could do the nesting with
the k_-integral on the inside. That would imply rows first instead of
columns (or vice versa). It is the separability of exp(—iwt +1 kyz) into

a product of exponentials which makes the computation this easy and
cheap.

The Input-Output Relation
Let us return to the dispersion relation (8)
2
kxz + Iczz = (.\)_2
v

In applications where time evolves it is natural to solve (8) for wlk;.k,).
In extrapolation applications it is natural to solve for k, (w,k,). Consider
first an evolution situation. Any function which is a sinusoidal function of
time may be evolved to future time ¢ from initial conditions at #g by

—iw(t—tg)

plz,zt) = plz.z.tye (10a)

Setting t; =0 and expressing the right hand side as a two dimensional
inverse Fourier transform over space we get

plzzt) = [f (P(kx,kz,tzo)e_w(k"k‘)t e keTHkaZ G Gk (10b)

Setting t=0 in (10b) we see a double inverse Fourier transform which
represents initial conditions in the (z,z)-plane. Taking Pk, .k,,0) tobe
constant would be a point source at (z,z) = (0,0). The time-
dependence in (10b) has been chosen [by selecting w = wlk, k,)] to
ensure that p(z,z,t) is a wave field which fits the initial conditions at
t=0.

Next consider the analogous wave-extrapolation situation.

ik,{z—2g)

p(z) = plzg)e (11a)

Setting z5 = 0 and incorporating a two dimensional Fourier transform
over (z,t)-space we get

plz,z,t) = ff [P(lcz,zzo,w) thaloka)z|  molvikz g, dk,, (11b)

At z=0 (11b) is just a double inverse Fourier transform which could
represent geophysical observations in the (t,z)-plane at the earth’s sur-
face. The depth-dependence has been chosen [by selecting k, (w.kz)] to
ensure that p(z,z,t) is a wave field that matches the surface observa-
tions at z=0.
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Equation (11b) is a prescription for finding waves inside the earth
given waves observed at the earth’s surface. We will return to it many
times.

Notice that w(k, .k,) and k,(w.k,) are square-root functions and
consequently there is a choice of signs. Initial conditions will determine

what combination of the two solutions is desired. In the extrapolation
case we have

2 12
k, = i[%——kf] (12a)
v
172
w vRif2
= % -'U_ 1- o2 (12b)
=+ 2—00519 (12¢c)

Choice of the plus means that exp(—iwt +1 k,z) is a downgoing wave.
The minus sign makes it upcoming (the usual case).
The quantity in brackets in (11) may be examined at any value of z.

Given its value at one value of z, say 2 =0, we can determine its value at
another. That is,

P(ukg,2) = Plak,,0) ¢ Fsloks) (13)

This is a product relationship in both the w-domain and the k,-domain.
Hence it can be regarded as a convolutional filter in ¢ and z. In terms
of engineering flow diagrams with inputs and outputs, equation (13) may
be thought of as

. Filter

input output
ot k,(wk,)z

?

Puw.k,,0) P(w,kz,z)

What does this filter look like in the time and space domain? It turns
out to be similar to delta function of z%+2z%— v2¢? which describes a
cone. Physically, it is the Huygen’s secondary wave source which was
described in terms of ocean waves entering a gap through a storm bar-
rier. Adding up the response of multiple gaps in the barrier would be
convolution over z. Superposing many incident ocean waves would be

convolution over t. (Mathematically, the exact inverse 2-D transform
of the filter is a more tedious task, well beyond our present needs. As a
practical matter the 2-D transforms are rather easy in a computer.
Some slices of the cone are found in the section on programs).

The input-output filter, being of the form el?, appears to be a phase
shifting filter with no emplitude scaling. This bodes well for our plans to
deconvolve. It means that signal-to-noise power considerations will be
much less relevant for migration than for ordinary filtration.

EXERCISES

1. Suppose that you are able to observe some shear waves at ordinary
seismic frequencies. Is the spatial resolution better, equal, or worse
than usual?

2. Explain the horizontal "layering” in figure 3 in the plot of P(w,z).
What determines the "layer” separation? What determines the
"layer' slope?-

3. Let P(k;.k,) in (10b) be a constant signifying a point source at the
origin in (x,z)-space. Let ¢ be very large, meaning that the phase
= @ =[~wlky k) + k,(z/t)+k, (z/t)]t in the integration is
rapidly alternating with changes in k, and k,. Assume the only
significant contribution to the integral comes when the phase is sta-
tionary. That is, where 8¢/ 0k, and 8¢/dk, both vanish. Where is
the energy in (z,2,t)-space? ‘
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