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Linear velocity spectrum
(Thesis chapler IV¥)

Alfenso Gonzdlez-Serrano

Jon F. Claerbout

Abstract

The wave equation velocity spectrum of a CMP is defined as its image in Snell
midpoint coordinates for a non—zero reference ray parameter pg. !n this
space energy is a local function of velocity. Velocity estimation is possible
with the LMO method. In stratified media with constant wvelocity between
reflectors, the LMO method estimates interval velocity without the need of
geometric approximations. The LMO method can also be used to quantify
strong velocity variations between reflectors. The phase shift method is a
convenient way to downward continue in Snell midpoint coordinates. Siolt's
method can be combined with a hyperboiic deformation to improve the gquality
of imaging. Because downward continuation operators are referenced to a
slant propagation angle, accurate operators to image wide angle energy are
unnecessary. The fifteen degree finite difference method in (h,T, o) can thus
be used at wide angles. This method is not too sensitive to the downward
continuation velocity. A variable velocity v(h,T) can be used to improve the
image. Also we can apply a stepout fitter concurrent with downward continua-
tion. Examples with synthetic and field data show that the finear velocity
spectrum can resclve both narrow and wide velesity variations when using the
appropriate reference paramsters. The wave equation veiocity spectrum is
also a convenient mcdel space when linearity and locality properties are
desired.

1. introduction, Velocity space,

sceived limited attention. Wave equation metheds have the important attribute of iinearity,

The acoustic wave equation has been successfully applied to the migration problem in

reflection seismology. For the velocity estimation problem, however, the wave eguation has

a property not found in commonly used ray tracing techniques. in this chapter our agoal
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Gonzdlez Claerbout 170 Linecr velocity speclrum

define a welocity spectrum of CMP gathers using wave equation tag!

We require the velocity spectrum to have two fundamentai propertias. 1) It must be a
space where enargy from different events is a local function of velocity. 2) The space must
be defined by invertible transformations. Two other desirable properties are resolution and

accuracy.

Ray methods are commonly used to estimaie velocity. Their application resuits in non-
linear transformations on the data. An aiternative method of velocity estimation is the
linear moveoul method. An important and elegant feature of this method is that it follows
directly from the Snell midpcint coordinate transformation. This methaod is thie most natural

choice for implementation with the wave equation.

The iinear moveout method estimates velocity using the lateral component of & refer-
ence Snell wavefront. We can measure either RMS or interval velocities directly in the data.
In a stratified earth, with reflectors coinciding with velocity discontinuities, interval velocity
can be measured at any angle, no geometric apprcximations need to be done. RMS velocity
estimates as defined with Dix's eguation can also be determined. With this methcd we can
use wide angle reflections for direct interval velocity estimation. When there are continucus
velocity variations batween reflectcrs, reflection traveltime data alone cannot resolve

“uniquely for the veiocity function. The problem is underdetermined. Snell coordinates can

then be used to decide when velocity inhomogeneities between reflectors are not negligibie.

The LMO method does not define a suitable velscity space. Adding an imaging step,
however, makes energy tecome a local function of velccity. Imaged data in Snell midpoint
coordinates will constitute our definition of the linear velocity spectrum. Given that imaging
will be needed to transform to our velocity space, we describe three methods to image CMP
gathers in Snell midpoint coordinates. First, the phase shift method, which is particularly
useful to study downwaird continuation probiems. Second is Stoit's method, which is the
fastest and can be complemented with a hyperbolic deformation. And last, finite difference
in (h, 7, w) space, which allows us to use v(h,7) in the downward continuaticn and do
stepout filtering concurrent with imaging. Snell midpoint coordinates enable us to use low
order wave equation operators for wide propagsation angles. This and the insensitivity of the
fifteen degree equation to the background velocity, makes the finite difference method the

preferred choice to obtain the velocity spzctrum.

The wave equation velocity spectrum can also be used in applications requiring model

spaces with l[inearity and locality properties.
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2. Ray methods in velocity estimatien.

Ray methods can be applied in several domains. In this section only methods in the

(h, 1, t) domain will be considerad.

All ray tracing techniques for velocity estimation are based on the asymptotic high fre-
quency approximate solution of the wave equation. In a flat earth, travel-time as function

of offset for the nt" arrival is given by

2
4+ okt 2.1)

MS

te(hY ™ g, +

where h is half offset, £ the vertical traveltime and vpys the Root Mean Square velocity.

Green (1838) was the first to use this equation to estimate velocity. Plotting
4h% us t? gives straight lines with intercept t§, and slope 1/vfys,. To find interval

velogities, Dix (1955) derived a relationship using vpyg

n n—1
2 2
URMS,n?AtO,i — Vs n-1 ? Aty

2 — )
U2 Mon (2.2)

This equation is widely used. Hajnal and Serada {(1881) give a quantitative discussion of
errors in interval velocities computed from Dix's equation. In particular, interval velocity
estimates amplify RMS velocity errors, and are oversensitive to errors in the normal

incidence traveltime estimates.

LePichon et al (1868) proposes a least—square fit to equation {2.1). His approach is
convenient whenever arrival times for particular events can be picked out automatically.
Unfortunately, automatic picking is unretiable in low ampiitude signhal environments. The

method is limited by the signai—to—noise rativ of the data.

The most widely accepted method for defining velocity spectrum is Taner and Koehler's
(1969) technique. They use eqguation (2.1) to apply & correction for residual travel time
with offset, (NMO correction):

hz

t,(R) — ¢t = My(h) ¥ ———
n(R) = fon " 2ufysnlo

(2.3}
After NMO, first arrival traveltimes should be independent of offset (approximately if the
velocity is not constant). The correction is applied for a trial set of velocities. For display
some semblance measure can be used (Neidell and Taner, 1971; Taner and Koehler, 18€8).
Figure (2.1) is an example of this technique. Unless refractions ar=s muted out and primary
energy is kept to small propegaticn angles, the velocity spectrum does not give good resoiu-

tion.

SEP-30



Gonzdlez Claerboul 172 ' Linear velocity spectrum

. ¢ h 3000 2000 1000

rms
m/sec

0.5

Doy W gy S

1.

i e S e S S
S
5

t

~ SRR I

FiG. 2.1. Hyperbolic velocity spectrum. (a) CMP gather. (b) Hyperbolic velocity spectrum.
Note in particular the poor resolution for the first 360 ms of data because refractions were
not muted out.

May and Straley (1978), include the fourth order term in equation {2.1). This term
gives a first order correction to ncn—hyperbolicity. The truncated series needs 1o be
orthogonalized before estimating its coefficients. Since there are three coefficients, (zers,
second and fourth order), a coherence search needs to be done in 3—D space. They sug-
gest two searches over Z2—D planes, implying hyperbolic assumption in one plane. This
method is particularly useful as a processing tool, to improve the NMO correction with better
stacking veiocities.

The ray methods discussed above have the advantage of insensitivity to aliasing.
However, they have several important restrictions. First, they are approximations depen-
dent on angle. Error increases with offset where the data is most sensitive to velccity.
Second, ray methods are non—linear; and third, their resolution is limited by cable truncations

and refractions. In the next section we reconsider these limitations with the LMiO method.
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3. Linear moveout methed,

Claerbout (1880} introduced a direct velocity estimation procedure usiing Snell waves.
The method is a direct consequence of Snall midpoint coordinates at the image point. In this
method velocity is determined as a function of arrivals associated with a slanted reference
wavefront. In a stratified earth this treatment is exact for all non—offsets. The method
requires data in Snell midpcint coordinates. At the surface of the earth (z = 0) the Sneli

coordinates are: (SEP 15, p. 81-87.)

t =t —ply —s) (3.1a)
y = 9% (3.1b)
h = 9—2_—3 (3.1¢)
s =0 (3.1d)

The data, therefore, needs to be sorted into midpoint—offset coordinates. Time should be
modified with (equation 3.1a). This correcticn is commonly raferred as linear moveout
correction (LMO) to distinguish it from the Normal moveout VMO dynamic correction. This

method of estimating velocity will be referred as the LMO method from ncw on.

Snell midpoint coordinates describe the wave propagation of a slanted reference wave-
front. |t follows that the lateral cocrdinate of the wavefront preserves velocity information
of the data, independent of the depth of ohservation. To see this, insert the imaging condi-

tions s = g and £ = O in the definitions of Snell coordinates to get at fixed midpoint

t =T (3.2a)

z peu(§)
= — ] 3.21
h { = éz,u(é)‘]”g d§ ( b)

z [1 _pgy(f)z]J/e
r— =2 > dg (3.2¢)
~U[ v{(§) >
ey dh dT . . . . ,
With P and " we can use the chain rule to eliminate dz and solve for velocity:
z z
w? = ! (3.3)

When the refershnce ray parameter is zero, this equation is indeterminate, implying velocity

information is not available at at zero offset. Equation (3.3) is valid at any depth of
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observation.
Using equation (3.2) we can estimate velocity directly from the data. The ray parame-

. dt .
ter fixes the depariure angle of the reference wavefront. The slope —— is measurable
Do g ah

direct!y from the data. Wse consider two alternatives to measure tiis slope. It can be meas-
ured from tha origin, or it can be measured betwaen twe consecutive primary arrivals. What
velocity is being measured?.

First notice that the slanted time 7y is not equal to the vertica! time £, a cosine

correction needs to be done. Assuming velocity can be parameterized in different variables

v (1{2)) = 2, (£(2})

I

v(z)

¥(z) W (7(2))

Y (£ (2))

The observed T4 in slanted coordinates is given by

z 1 — 2U2(s\11/2
- 2f [ Po &4

To / e d¢ (3.4)
while the verticai traveltime is
1
t, = 2 —d (3.5)
Combining equations (3.4) and (3.5) vields
ty
7o = [ 1 —pul(O]7 d¢ (3.6)
c
To 1
to = f d¢ (3.7)

24,2 1/2
o [1 —pévi (8]
or, approximating the progpagation angle 7o a constant cosdy = [1 — pgﬁg]“e,

-
fo = —2— (3.8)

cos g
It {4 is not picked directly {rom the data, this equation shows how to find it from the image

positions 15. The depth is given by

_ 1 0 'UT(E) d _ 1 fo ()d (3 9)
2 = o) o prercope ¥ T 7 w0 de ’
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To find what velocity the LMO method measures, by combining equations (3.2) and

(3.6) we can write the arrival offset k as a function of 7

1 y _p(}’y‘r(é)2
= — —_—d
f 1 —pg"u.,(f)z ¢

or since cos?Y¥, =1 —pfu?

1 v?

h = 2—p0 Y (g) dé (3.10)

We can think of replacing the velocity structure in stratified media by a single iayer
with constant velocity ©. This statistically represents the velocity structure of the rock

cclumn. Replacing ¥ in equation {3.10) gives*

1 Po¥’T
2 cos?®
Solving for T7°
R
p? = p SoSW h (3.12)
by T
réb!acing h by the expression of equation (3.10) vields
v ( )2
— f é d¢ (3.13)
cos?y cos?
We can rewrite this equation as function of the two—way traveltime ¢
y 1 T
~0[ cos® Y, (&) ¢ cos® g
to obtain
1 t
7 = Tf vl po)® dé = vhus(po) (8.15)
0

This is Dix's equation. Constarnt velocity ¥ in eqguations (3.2b) and (3.2c¢) give the relation

o* = ! ] (3.18)

Do |Pot

S

")

*Since h and T are fixed, errors in this approximaticn will affect the depth 2.
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Therefore, the slope 7/ h from the origin gives an estimate of the BMS velocity. This vggys
is not unigue, it depends on angle.
Instead, if we measure the slope between two consecutive primary events, from equa-~

tion (3.2} we have

Ti+1

, (&7
A = Ry — R = ;_po}llf 361%7(9—(15 (8.17)

Assuming constant inferval velocity between the events and solving for velocity, we get

1 (3.18)
1 AT

Y

2 —
Vinterval —

Po

Therefore, when velocity remains constant between any two consecutive primary arrivals,
equation (3.3) gives their interval velocity. When velocity varies appreciably between
reflectors, interval velocity is unresolved with reflection traveitime data alone. Equation
(3.8) gives then a local RMS velocity estimate for the particular choice of p,. In the next

section we analyze this situation.

05 N ~J

FIG. 3.1. Velocity estimation grid. This grid is a tabulation of equation (3.3) for a fixed
vaiue of Snell's parameter pg. The slope from the origin gives the RS velocity, the slope
between two consecutive primary events gives their Infervel velocity.
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It is emphasized that in obtaining eguations (3.3) and (3.1 &) no geometrical approxima-
tions wers made. The horizontal coordinate of the wavefront has velocity information and
these relationships shovs how to find #. A conveniznt way of measuring velocity is to tabu-

late equation (8.3) for a fixed value of the ray parameter Pg- This is shown in figure (3.1).

As pointed out by Schultz (1981), more accurate interval velocity estimates sheould be
used as an interpretation tool more than as a processing tool. Accurate interval velozities
do not necessarily imply better stacking velocities. They do imsly better migration veloci-
ties.

When there is a geologic dip component with angle o, Levin (1971 proved that Upnio

obtained using Taner and Koehler's method is vpys modified by the cosine of the dip angle

_ VYRpygs
Unio = cos o (3.19)

This result is valid when sianted reference waves are used.

The LMO has important advantages over ray tracing methods. This method can be used
in the far offsets where data has more velocity resoiution. The method is flexible in that we
can select a value of py where the signal—to—noise ratio of the data is particularly good.
Transformation to Snell midpoint coordinates is linear. Also there is more control in deciding
what events to use in the velocity estimation process. Multiple reflections preserve thair
timing relationships, becoming easier to discriminate against primeries. This method is also
partially insensitive to refractions and cable truncations. However, the method itself does
not define a suitable velocity spectrum; energy remains non—local. In section (5) we
approach this problem using the wave equation to image the data in Snell midpoint coordi-

nates.

4. Non—uniqueness of velocity estimates.

In the last section we proved that in stratified earth with flat reflectors and no velocity
variations between reflectors, the LMO method could be used to get consistent interval
velocity estimates at any propagation angle. The LMO method can also astimate EMS veloci-

ties according to Dix's equation.

When there are velocity variations between reflectors, reflection data alone cannot
give unique velocity estimates. The problem is underdetermined. This may happen eithar
when there are continuous velocity inhomogencities between reflectors (infinite unknowns),

or if the interval velocity is measured between non—consecutive primary arrivals.
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Snell wave arrivals,

FIG. 4.1. (a) Superposition of synthetic CMP gathers. A LMO correction has been applied
with different p, before superposition for display. Reference event has v = 1500 m / sec.
(b) Imaged CMP gathers. In this diagram it is easy to follow the trajectory of the reference
Snell wave arrivals for different pg. (c) 7¢ ws A diagram. This trajectory will be followed by
reference Sneil wavefronts arrivals with increesing ray parameter pg. Velocity is constant,
different time-depths. (d) Same as (¢} with variable velocity and fixed time-depth. The
range of offsets is 15756 m, time is in seconds.

The LMO method is sensitive to velocity variations between reflectors. We can use
Snell midpoint coordinates to find criteria to decide when these velocity inhomogeneities are
not negligibie. If this is the case, velocity estimation methods with refraction data, such as
the wavefield continuation method of Clayton and McMechan {(1981) or the tau-sum inver-
sion method of Diebold and Stoffa (1231), should give better velocity estimates. Refraction

methods, however, do not detect velocity reversals.

Reconsidering the question of what velocity the LMO method measures; from ecuations
(3.17) and (3.18) we know that if the velocity remains constant between any two reflec-
tors, then the interval velocity estimate is independent of the reference py. It we measwre

interval velocity at any two locations p, and pg, then
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1 AT}
P [p1+2_Ah |P1]
1 = (4.1)
1 ATt

o p2+2_AT

J

As velocity inhomogerneities between refiectors increase, the concept of interval velo-

city becomes meaningless. To see this, from equation (3.13) we have

) T41{Po) 2
v ! I vl (4.2)
cosiy 'Ti+1(p0) - T,;(Po) 7. (pg) coSs 19.,(5)

i.e. interval velocity measurements become local angle—cdependent RMS velocity estimates.

With equation (4.2) we can quantify whether velocity variations are negiiginle or not.

Defining an error function £(p,p;) as

[ 1 a0
epLpz) =1 — P (4.3)
1oar ||

With £ we can quantify when the interval velocity estimates show angle variations above
the measurement uncertainties. That couid show there are strong velocity variations
between reflectors. A convenient way to test this is to plot the expected vs the cbserved

image locations as function of pg in the (h, 7) plane. (Figure 4.1)

5. Imaging CM P gathers in Snell midpoint coordinates,

In section (3) we learned that slant wave propagation preserves the velocity informa-
tion of the data at any depth. Slant downward continuation and imaging does not alter the
velocity information of the data. In this section we describe imaging CMP gathers in Snell
midpoint coordinates. Given a fixed reference Sneil wave, imaging localizes energy 1o the

neighborhood of its corresponding arrival offset.

The double square root equation in Snell midpoint coordinates under the stratified fiat

reflectors assumption (Y = 0), is given by (figure 5.1)

k [ opgul + H2 117
TE-LZ‘I——%H—‘I—M—?— (5.1)
w 1 —pv 1 —pév
_ kh’U
H = 2w
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FIG. 5.1. Slant dispersion relation. Square root equation in Snell midpoint coordinates.
Y = 0, pov = 0.3 (a) Exact equation; (b) Fifteen degree approximation; and (c) Forty—five
degree approximation.

To image CMP gathers, first we need to put the data from field coordinates
(s, g, t, z=0) intc Snall midpoint coordinates (h, y, 7=0, I'}. The operator (5.1} is delined
in the w—k domain, so we n=ed to Fourier transform the data f(y,h,7=0,1'). Omitting the
y dependence gives

oo

F(ky,7=0,0) = [ [ fla,7=0,t')e """ gn qp
using equation (5.1) the data at any time—depth 7 is given by

Fiky,m,00) = Flky,m=0,0) exp [7, f () w dg} (56.8)
o

Fourier transforming back to (h, 7, ') space

[

.
f(h,mt) = 4;2 fmf Flkp,™=0,w) exp [z 0[ T(E) wdé + ikph —iof }dkh dew

(5.4)

It can be checked that when A = 0, that is, when we are logking at energy that was
propagated with initial takeoff angle ¥y = sin"! (pgyv,-¢), equation (5.1) becomes 7 = 0.
Then eguation (5.3) is a nwll operator. This implies that energy propagating with fixed

p = pg will not be moved by the operator 7. This property ensbles velocity estimation at
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any depth, consequently with the image of the data itself.

To find the image point we need to insert into eguation (5.4) an imaging condition. This
condition tell us when the wavefield is an image of the reflectivity. This should happen when
we have extrapolated the data to £ = 0. At this point the energy was refiecting from &
given interface. At the reflector the positions of the shot and geophone coordinates should
be coincident s = g. These imaging conditions translate to {' = 7 in the Snell coordinate
system. Substitution into equation (5.4) gives

had T
St =7) = ;—ﬂff Fllp,m=0,0) exp i [ o (T(§=1) df + ikyh | dk, de (5.5)
— [o)

J

This equation is what we need to image CMP gathers in Snell midpoint coordinates.

Example, Wavefield extrapotation in Snell midpoint coordinates can be {ilustrated wiih
downward continuation movies. Figures (5.2) and (5.3) show some of the panels calculated

for this purpose.

Figure (5.2) is the‘po = 0 case. Downward continuation was done using the phase shift
method. Velocity was v = 1500 m /s with constant T—steps. As expected, as downward
continuation proceeds, energy migrates toward zero—offsets. Past the depth of the reflec-
tors, energy diffracts toward far and negative offsets. Aliased energy (in refractions area)
moves in the wrong direction. To image the data, the imaging principle requires coliection of

energy that is imaged at each downward continuation step.

In figure (5.3) we have the slanted downward continuation situation. For a fixed
reflector, energy migrates to the particular offset where the reference Sneil wavefront
reaches the surface. The LMO correction has the effect of an anti—alias filter. In the

slanted frame there is less aliaszd energy moving in the wrong direction.

6. Wave eguation velccity sstimation,

Doherty and Claerbout (1876) introduced the wave equation to velocity estimation.
The main idea was to downward continue the data to the depth of reflection. At this depth
the offset coordinate should be independent of structure, therefore better velocity esti-

mates could be obtained. They also suggested velocity estimation in the (A =0, £, 2) plane.
Yilmaz and Chambers (1981) using the wave equation defined a velocity spectrum with

equations (5.1) and (5.4) for py = 0 by letting velocity v be another variable in the

representaticn:

1
42

St = [ Flen,m=0,0) exp {iT(W) w7 + thkyh —iwt | dhp dw (6.1)

SEP-30



182 Linear velocity speclrum

Gonzdlez Claerbout

i
i Bl
... . =

S

Es :

e e e
e e
' .r

= e e s
St IR
a. on\,i#!

e e s e

e T

SEP-30

FIG. 5.2. Downward continuation. pg = 0.



Gonzdlez Claerboul 183 Iinear velocily speclrum

SoRe s e
e e
o L

i
i
gazg;ébl

H ]
AR

iﬁéﬁﬁiﬁi ‘

g
5

Sea e

gf'::’“‘e&f‘-:a

e }eﬁfs
i

e

e Y 3‘ y 'i i

{’ éf ‘

i 13‘9;;.' E %
5

R
7

250

ey
T

Ene

S e
St

PR

i

zg;ﬁg\ﬁﬁf . ;&zé%z_mq ,
\-ﬂ:l} S i 2 }L..,‘ﬂ.‘m :
B g ﬁé«':g& 4

500

i

750

;
bl
S

iﬂm i‘ i R

1000

il o
S g@f )«;L. 3
R
> s l SR i
: N

17

i

g

(

;5@

R
“-'k v

1250

SRR B T
=
e 3 =
e
: .

T
S

S,

Senficcni e

FIG. 5.2. (continuation).

SEP-30



184 Linear velocity spectrum

Gonzdlez Claerbout

= e
gﬁs&ﬁ@ﬁ‘g\l

e
e e
. .%%ln e
e i iaeS 2

e

BT e

0.3.
SEP-30

FiG. 6.3. Downward continuation. pgv



Linear velocity spectrum

185

Gonzdlez Claerboul

e
A
s .m...wwnw,mnﬂ‘ﬂ..%u.uwlailimkﬁﬁuil R 2
SIS e e Y Tl S e s e e e
SESSEsEaT e e e s s e NS e e e
SYSmana e = — R e e e

% ,Mmm?ﬂ il

@ﬂgngﬁlvéﬂsﬁaﬂt!nw. L ! %W..%JW.JW! -

s
B

e

Ber s

s 2
-

SEP-30

FIG. 5.3. (continuation).



Gonzdlez Claerboul 186 Linear velocity spectrum
PARY S

2]1/2

J (6.2)

_ 1[
T(’u)—1—§—l1—

Their velocity spectrum is the plane f(h =0, 7, £ =T, v)
_ —_ —_ 1 ” ran —_ y A I
JF(h=0mt=m2) = gff Fllp,m=0,0) exp {i{T(w)-1wT  dky dow (6.3)

This equation is exact in constant velocity media. In this appreach the wave equation

stacks the data. The velocity spectrum obtainad is similar to Taner and Koehler's (1558).

An alternative approach is to let the wave equation do NMO without stack. This was

done by Thorson and Yedlin {1980), and Yediin and Thorson (1981).

Clayton and McMechan (1981) used iterative wavefield inversion to estimate velocity

using post—critical reflections and refraction data.

In section (3) we mentioned how the LMO method had saveral desirable properties over
ray tracing methods of velocity estimation. We proved that the method can be applied at
any depth of observation. At the suiface of the earth, where data is collected, energy has
been diffracted and is non—local. Using the wave eguation in Snell midpoint coordinates, we
can downward continue the seismic experiment to the depth and offset where the reference
slanted wavefront was reflected. At this depth the data is imaged and no wave propagation
has taken place. Imaging has the effect of stacking, not to zero offset, but to offsets
where reference wavefronts with constant ray parameter pg reach the surface. This imag-
ing step adds robustiness to the LMO method in a sense of enhancing the signal—-tc—noise
ratio. Cable truncation artifacts are not severe because imaging moves most of the energy

inside the data grid.

We define the linear velocity spectrum of a CMP gather &s its image in Sneil midpoint
coordinates for a non—vertica!l reference wavefront. This definition fulfills the requirement
that energy be a a local function of velocity. We analyze the resolution of our velocity

spectrum while referencing downward continuation algorithms.

Choosing pg. At some point in the process we need to decide what value of the ray
parameter pg to use. A large pg implies wide propagation angles and increased velocity sen-
sitivity for events with RMS veiocity v & 1/ py. However, with a large py we cannot esti-
mate high velocities (v > 1/ pg). Reference arrivais are beycnd the end of the cable. Small
P will put low velocity events out of cable too, and since small proragation angles are used,
there is a decrease in sensitivity to velocity. When wave equation imaging is used, to avoid
severe end effects we also would like to kezp a symmetlry of positive and negative

stepouts. Too small or too large pg will enhance the asymmetry of the skewed—hyperbolas
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0

in the data biasing velocity estimates. In practice we probably want to divide the data into

several regions with differert py according to some rule; for instance
P R[C.E-0G8]/Vpgx

But no general rule can be‘given, the choice of p is data dependent.

Phase shift method. This method is exact up to Nyquist frequencies (wide angles) in
stratified media. Exact methods are particularly sensitive to the downward continuation
velocity, especially when trying to image wide angie energy. This sensitivity introduces two
problems in our application. First, we can only expect to know o priori velocity with first
order accuracy. Second, even if we know the correct velocity function, the phase shift
method will only image primary energy. In some apgplications the velocity function is mul-
tivalued (multiples interfering with primaries)}, and we would like our velocity spectrum to
give as good a resolution as possible for all velocities. The main application we have found

for the phase shift method is studying downward continuation in Snell midpoint coordinates.

Stoit method. Stolt's method has the advantage of speed. In a constant velocity
medium the method is exact in the propagating region. For velocity estimation it is possibie
to reduce sensitivity to the background velocity, restricting the rang= of angles during the
_ imaging step. Limiting the range of angles also makes the method more insensitive to mul-

tivalued velocity functions at the expense of blurred images. This is done, remembering that

H = = siny’
20
When there are no muitiple problems, we can decrease uncertainty in velocity by com-
bining a deformation to hyperbolic space, (SEP—-28, p. 103-120) with Stolt's imaging. We
start imaging the data with constant velocity for a restricted range of angles, and iterate

decreasing the range as uncertainty in the velocity function decreasss. (Figure 6.1).

When we apply the iterative process, as the velocity function converges to the true
one, Stolt's image aiigns itself along the line asscciated with the backgorund velccity T
according to equation (3.16). We need a relation to correct the original T(z) from the

observed departures of the image from ©.

Since from equation (3.3) there is a ohe—to—one relationship between velocity and the

slope d7/ dh we can write an expansion for the velozity as function of . about v

-~

du
dm

AAm+-2!—
v

a
Q@

(Am )P+ - (6.4)

where m is equal to the slope d 7/ dh.
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FIG. 6.1. lterative velocity estimation. Velocity estimation using Stolt imaging and hyper-
bolic stretch. The process consists of iteratively applying the two steps. Stolt imaging in
Snell midpoint coordinates transforms the data into a space where we can read velocities
.directly from the iimaged data. Hyperbolic stretch uses the current velocity function to map
the data into a guasi—hyperbolic space. This szace is more suitable for Stoit imaging.

We can use equation (3.3) to find [,iv
dv = - o - (5.5)
am N [ /R
v= 21 Po
4 lpo TS My
We also have from (3.83) for m, _;
1 - ¢
mv =9 = 2 —AZPO__ (66)
Pov

From these equations we can find the dv correction. Keening the linear term only

~3
_ ~ dv Po¥
dv, _~ = T, _» —U —-— Am = — Am, (6.7)
v=v v=v dm |, -5 4

This is the desired relation.
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FIG. 6.2. Imaged data in Snell coordinates. (a) Marine CMP gather in Snell midpoint coordi-
nates after hyperbolic deformation. 7 (z) increases linearly with depth from the sea—floor 1o
1 km. (Bv/ 0z = 0.8 s71), (b) Stolt's image, amplitudes squared for display. Most events
align along the replacement velocity slope 5 = 1700 m/s. With equation (6.7) we can
correct the trial (z) measuring departures from ©. This image defines our linear velocily

" spectrum — now energy is a local function of valocity. (pgt = 0.255).

Figure {6.2) shows a field data example of the proposed iterative process. Data was
preprocessed with a hyperbolic deformation and subsequently imaged with Stolt's method.
In this figure another advantage of the LMO method can be seen, it is always possibie to
identify the events being used to measure velocity.

Finite difference in {(h, T, ©) demain. Imaging CMP gathers in Snell midpoint coordinaies
has the useful feature of separating energy with respect to angle. NMultiple refiections stay
alighed below their associated primaries (at water velocity slope), becoming easier 1o
discriminate. Refractions remain at high angles and do not interfere too strongly with pri-

maries. We would like to exploit this feature in our velocity spectrum.

Fifteen degree finite difference algorithms in (, 7, ©) space have several advantages.
Time derivatives are exact. The fifteen degree equation is insensitive 1o packground velo-
city within small propagation angles (depertures measured from tha reference Snell wave
propagation angle). In this domain, stepout filtering concurrent with downward continuation

is also possible.
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FIG. 6.3. Fifteen degree imaging. Narrow velocity spectrum. (a) Synthetic gather.
vy:rvgivg = 1:1:1.1. (b) LMO corrected gather. pyv; = 0.725. (c) Constant velocity
P = 0.80 imaging. (d) @(h,7) imaging according to equation (6.9). Velocity was limited
to therange 0.76 < pyu(h,7) < 0.85. (e) Same as (c) with wy = 8w sec” L. (f) Same as
(d) with wy = 8w sec™l. Images have been squared for display. When trying to resolve
narrow velocity variations, we want pg close to 1/ v, o x, and small variations in the down-
ward continuation velocity. Compare (¢) with (d) and (e) with (f). There is a visible effect
out of using v (h, T), even though it varied only 8.25 % from the mean.

Since our equations are now in offset spane, the possibility of allowing variations of
velocity with offset is open. This may help contravene numerical dispersion errors. More
important, from equation (3.3) we know that Snell wave arrival positions are function of
velocity. For a fixed T we expect to see low velocity arrivals at offsets smaller than fast
velocity arrivals, Keeping in mind that the fifteen degree approximation correctly images the
Fresnel zone of a given reflecticn, it should be abkle to handle multi—valued velocity func-
tions. When there are twe simultaneous arrivals at zero offset in the data, this would hap-
pen if the Fresnel zone of both reflectors decoupies within cable boundaries at large

offsets. We could then use low velocities at small offsets and high velocities at large
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Fresnel zone can be filtered out,

The Tifteen degree equation in Snell midpoint coordinates is given by
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FIG. 6.5. Fifteen degree imaging. Field data example. Wide velocity spectrum. (a) CMP
gather. (b) LMO gather pg=1/5000sec/m . (c) Constant velocity imaging.
¥ = 2000 m /sec. (d) w(h,T) imaging. Velocity was allowed to vary with offset according
to equation (6.9) in the range 1200 m /sec < ¥ < 2800 m./sec. (e) Same as (c) with
wy = 8msecl. (f) Same as (d) with wy = 8msec™!. This data set has strong multiple
refractions that give strong interference with the image in both constant and variabie velo-
city imaging. With constant velocity imaging the imsge is not well defined for the first
second of data. Variable velocity defines it better. Howevar varieble velocity has strong
unmigrated high stepout events in the low velocity zone. With stepout filtering is added, the
quality of the image is slightly better whan v (h, 7) was used.
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y was allowed to vary with offset according
=< v < 2200 m/sec. (e) Same as (c) with

= 8msec”l. For this window of data, multiple
prove the image quality. In (f)

Imaging without numerical viscosity
g multiples aligned at water slope. They image below pri-
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FIG. 6.6. Fifteen degree imaging. Field data example. Narrow velocit
give good resolution. Stepout filtering and v(A, 7) im

refractions interfere severly with the image of the data.
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Figure {3.1) shows how this equation dictates the velocity distribution in (h, 7) space.

In the fifteen degree equation (6.8) v{A, 7) is expected to be an interval velocity,
while equation {6.9) defines RMS velocities. The fifteen degree equation is insensitive to
this distinction. To justify the use of equation (6.9), consider an event at time—depth T.
We need to extrapolate 7T sec to reach the depth of the event. Assuming only T depen-

dence in velocity*, the coefficient of equation (6.8) from its finite difference scheme is

ve (1) AT .
= 6.i0
a(7) 16wl 1 —p§v?(T)]ARE ¢ )

The cumulative efiect of downward continuation is given by the integral

T

_ A wRe)
{a(g) S TewmE L 1 _pEeut(e) O° ©1D

we recognize the vupys expression of equation (8.13); define @ as

g = 1—]0,(5) d¢ = L7 Vi (6.12)

T %% 16 wAR® 1 —pf viys
Therefore with the fifteen degree equation there is no difference in extrapolating a single 7
step with @ or extrapolating continuously with a(7). This insensitivity was exploited to
estimate velocity in the (A =0, £, 2) piane for py = O by Doherty and Claerbout (1974).
Unfortunately their analysis cannot be extended to pg # 0. The plane (A =hg, £, 2) where
energy focuses is velocity dependent. In addition, this plane is non—unique when velocity is

multivalued.

Figure (6.3) is an exampie of imaging to resolve two simultaneous arrivals. The syn-
thetic shows to evenis with RMS veiocities differing by 5%. The reference ray parameter
should ke chosen so the stationary region of LMO corrected events separates according to
velocity. We also need to restrict the range of variation of the downward continuation velo-
city. The figure illustrates a problem trying to get an imace with large py. When the energy
distribution is not symmetric with stepout, the maximum cluster of energy will migrate as
downward continuation proceads. When imaging, the maximum—energy locations will not
necessarily coincide with the stationary location of events, this can result in a bias estimat-

ing velocity. Stepout fiitering partially solves this problem.

Figure (6.4} is an example of imaging to resolve wide velocity variations. In this appli-
cation the range of variations of v(h, T) is broader than in the previous example. Imaging

gives a sharper focus when v(h,7) is used instead of constant downward continuation

Xn the neighborhood where the fifteen degree wave equaticn is valid ¥ (h, T) x v (7).
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velocity.

Figure (6.5) is an example with field data. The spectrum is obtained for two secends of
data. The data set has particularly strong multiple refractions. The image illustrates how
the LMO method separates events with velccity. Refractions remain at large offsets and
cah easily be removed with stepout filtering, this way they will not interfere in the velocity
estimation procass. Figure (6.6) is the example with the first seccnd of data. The filtered

image is better when v (&, 7) is used. Some pegleg multipies have been resoived.

7. Conclusions.

In this chapter we have defined a iinear velocity speciruiz as the imags of a CMP
gather in Snell midpoint coordinates for a non—vertical Sneil reference wave. This d=finition
fulfills most requirements of a velocity spectrum. 1) It is obtained through linear transforma-
tions in the data. 2) Energy distribution is a local function of velocity. 3) Veiocity estima-
tion can be done with any slanted refarence Snell wave. 4) Interval and RMS velocities ara
measured directly in the data. 5) Cable truncations and refractions do not severiy inpair
resolution. Also, unlike semblance techniques, it is easy to identify the events used to get
the veiocity function. The spectrum is flexible, the choice of the reference Snell wave could
be done to suit the particular data set of interest. When seaveral reference Sneli waves are
used, the LMO method can be used to quantify the effect of veiocity variations between
reflectors in the interval velocity estimates. For computation, Stoit's method is fast and can
be combined with a hyperbolic deformation to sharpen the image. The fifteen degree wave
equation in offset space is particularly useful since v{h,T) can be used to resolve
multi—valued velocity functions. We do not need o priori knowledge of velocity. The
method is sensitive to aliasing, but the LMO correction partially solves the probiem. All these
properties make the spectrum attractive, not only for velocity estimation but in applications

demanding a daia space satisfying linearity and locality requirements.
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