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Q-adaptive deconvolution

Dawve Huale

Abstract

An adaptive seismic deconvolution algorithm based on and constrained by a physical
model of attenuation is proposed as an alternative to more conventional, time-varying
deconvolution methods. Q-adaptive deconvolution (QAD) requires an iterative application of
conventional prediction error filtering and inverse Q-filtering, with the former process aimed
at source, receiver, and near-surface reverberations and the latter compensating for
attenuation effects. With special consideration given to the possible over-amplification of
high-frequency noise, a "clipped" inverse Q-filter is described as particularly appropriate for
QAD.

We compare QAD with conventional deconvolutions through application to field recorded
seismograms. QAD more effectively compensates for the attenuation of high-frequencies
and dispersion effects while yielding estimates of the quality factor @ and avoiding the win-

dowing or weighting of seismograms required by conventional methods.
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Introduction

The convolutional model for seismic data is that each seismic trace is the convolution of
a "source waveform", including near-surface reverberations and receiver distortions, with
the earth's subsurface impulse respconse. We would indeed be fortunate if that impulse
response were a statiohary, uncorrelated reflection coefficient sequence, for then both the
source waveform and the reflection coefficients might be computed statistically using con-
ventional deconvolution processes. We are never so lucky. The earth's impulse response
contains much more than the desired reflection coefficient sequence; inter- and intra-bed
multiples and inelastic attenuation are commonly observed contaminants which cause sam-
ples of the impulse response to be correlated in a particularly troublesome, non-stationary
way.

Non-stationarity is typically circumvented windowing or weighting of seismograms. |n
the simplest approach, one divides a seismic trace into several overlapping windows, decon-
volves each separately, and then blends the windows together to form a deconvolved trace.
The choice of windvow length is rather important and has been discussed in detail by several
authors, including Foster et al (1968) and Wang (1968). For any window length, however,
the implied assumption of piecewise stationarity is inconsistent with physical models for mul-

tiples and attenuation.

Adaptive deconvolution methods, as described by Widrow (1870), Griffiths et al
(1977), or Lee et al (1981), may provide a favorable alternative to windowing; a continu-
ously time-varying deconvolution filter obviates the blending of windows. However, these
adaptive methods are actually just efficient algorithms for windowing as above, but with a
new weighting (essentially windowing) of data for every computed output sample. The
user-specified adaptation rate required by these methods is analogous to the window length

required in the simple approach.

Windowing or weighting of data is undesirable, not only because it requires a user-
specified window length or adaptation rate, but also because it forces us to neglect useful
information about the source waveform (including near-surface and recording distortions)
contained throughout the seismogram. The non-stationarity of seismograms lies in the earth's
impulse response, not in the source waveform; hence, the entire seismogram should be used
in estimating the latter. Furthermore, the common assumption that reflection coefficients are

uncorrelated (the "whiteness" assumption) is made less valid by weighting.

One way to avoid weighting is to incorporate a physical model for non-stationarity in
the deconvolution process. An earlier paper by Hale (1981b) describes a Q-adaptive decon-
volution (QAD) method based on and constrained by a model for inelastic attenuation. QAD

compared favorably with more conventional adaptive methods when applied to synthetic
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seismograms. This paper extends that work by first discussing the relative merits of various
inverse Q-filtering (IQF) algorithms. An IQF is any time-variable filter which removes the
effects of attenuation and is, naturally, a key ingredient of QAD. An IQF algorithm suggested
by Fabio Rocca (1981) is shown to be particularly efficient for QAD. Finally, we demonstrate

the merits of QAD with an application to field data.

M ethods of inverse Q-filtering

The seismogram model on which our deconvolution method is based is represented by

the following equations:

—%[m +iH ()]
7

X(f) = [dt e®mft o (t) (1a)

Y(r) = wW(f) X(f) (1b)

where r(t) is the impulsive point-source response for a non-attenuating earth, H(|f |) is
the Hilbert transform of | f |, @ is the quality factor assumed constant, X(f) is the impul-
sive point-source response for an attenuating earth, W(f) is the source waveform, and
Y(f) is the seismic trace. Y(f), W(f), and X(f) are frequency domain functions; i.e.,
Y(f) is the Fourier transform of the time-domain seismogram y(f). SEP-26 (Hale, 1981a)

contains an equivalent matrix representation of this model. -

We assume that r(f) is the desired output from the deconvolution process, even
though r(£) must contain multiple reflections. The problem of estimating reflection coeffi-

cients from r(£) is beyond the scope of this paper.

How then do we compute r(£{)? Suppose we have recorded y(t) and we somehow
know #(f) and @ as well. Inversion of equation (1b) is trivial provided | W(f)| is nowhere
zero. But to compute r(t) from X(f), we need the inverse of the relatively awkward
transform (1a). A first guess might be

nt_
F(t) = fdf g Rmist e+ ] GU)X(f) 2)

where we have defined G(f) = | f| + iH(]|f |). This guess is certainly correct in the limit

of no attenuation, § = =; but, in general,
F(t) = [du r(u) v(t-u)
where

i
R =G
v(t) = fdf g Rmift e+ 0 )
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In other words, 7(t) = r(¢) only when @ = . A method for exactly inverting equation (1a) is
given in SEP-26 (Hale, 1981a). In practice, however, because v(¢) is (for typical @ ~ 100)
almost a delta function, one may use the approximate inverse transform (2) without notable

error.

Inverse Q-filtering (IQF), as represented by equation (2), may seem to be a rather
expensive process, requiring a frequency domain integration for each time £. For a seismo-
gram of N samples, the implied computational cost is proportional to N®. Cheaper IQF algo-
rithms may be derived by replacing the frequency-domain integrations with time-domain

integrations. For example, equation (2} may be rewritten as

[ gl
7o) = faf erwt 977 x(p)

Defining p(£) to be the inverse Fourier transform of the function in brackets, use of the con-

volution theorem yields

r(t) = fdu z(t—u) p*(u) (3

where p* denotes the tth convolutional power of p. The recursion p* =p*¢~1) + p and
the fact that p(f) may be approximated by a rather short (length <« N) filter make imple-

mentation of equation (3) considerably cheaper than direct implementation of equation (2).

In addition to increased efficiency, the interpretation (3) of equation (2) leads to a
Kalman filtering approach to the deconvolution of data contaminated with ambient noise
(Hale, 1881c) as well as to a method for Q-adaptive deconvolution (Hale, 1981b). For the
latter process, however, an alternative 1QF algorithm suggested by Fabio Rocca (1981) is

particularly efficient.

Rocca's suggestion is to rewrite equation (2) as

2 ]
() = [fdf eV X(f) 11 + ﬂa(f) + _[Zﬂ G+ -

Defining g (¢) to be the inverse Fourier transform of G(f ) and using the convolution theorem,

2
) = 2t + I Qo) 2]+ —,— [g(t) » g(&) » ()] + - - (4)
1|t "Ly
L T g (L) » z(L)]
j=0 J*

The number of terms required to make the error in the Maclaurin series negligible depends on

the ratio £/ @; but, for a given &, the computational costs of equations (3) and (4) are
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roughly equal. Note, however, that most of the work in computing 7(¢) via equation (4) lies
in convolving g () with = (¢) repeatedly. Because this work may be done independent of @,
the cost of using equation (4) twice for different values of @ is much less than that of using
equation (3) twice, provided one saves the gﬁ(t) * x(t). The reduction in computations
may be considerable in any §-estimation process, such as QAD described in SEP-28 (Hale,
1981b), which iteratively estimates @ by applying IQF for different § until some function is

minimized.

The required discrete form g, of the filter g (£) is shown in the appendix to be

174 , £ =0
g: = —2/ (Trt)z ] = 153)5) t (5)
0 , otherwise

The filter coefficients decay quickly enough so that finite-length (~ 10) approximations may
be used with negligible error.

Q-adaptive prediction error filtering

Q-adaptive deconvolution as presented in SEP-28 is a modification of more conven-
tional, time-invariant, unit-lag prediction error filtering (PEF). Simply stated, both & and the
source-waveform w(t) are estimated to minimize a sum of squared prediction errors. Given
an efficient 1QF algorithm, one can certainly imagine alternative functions to minimize. We
justify our choice of summed, squared prediction errors by noting that (1) PEF is currently
one of the most widely-used deconvolution methods, (2) the implied minimum-phase assump-
tion is at least satisfied by our attenuation model, if not the source waveform w(t), and (3)
even if w(t) is not minimum-phase, the minimum-phase estimate provided by PEF is usually a
good initial estimate for use in iterative deconvolution methods which make no phase

assumptions (e.g., minimum-entropy deconvolution).

The derivation of QAD in SEP-28 was based on the IQF algorithm of equation (3). An
alternative derivation is possible via equation (4). Assume for now that we have already
deconvolved the source waveform w; from the seismogram y; to obtain x;,. (For simplicity,
we henceforth use discrete time functions, denoted by subscripts, rather than the continu-
ous time functions used earlier. The sampling interval is assumed to be unity.) Following the
derivation of conventional, unit-lag PEF, we might think of 7(¢) (or its discrete version 7¢)in

equation (4) as the prediction error and choose @ (or, equivalently, §1) to minimize

N "~y
E@™) = Z TF
t=1
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The obviously unrealistic solution, however, is @~ ! = —=. The problem lies in the fact that
IQF can significantly alter the amplitude of 7;. As is perhaps best seen from equation (2),

@' = —= yields 7; = O for recorded time ¢ > 0, thereby minimizing E(Q1).

A more reasonable function to minimize is

EQD) = 3 ef (6a)
t=1
where
_Tgg _mt_
e =e 9 7 =e 197 (6b)

Substituting for 7; from equation (4), one can verify that unit weight is applied to z; in com-
puting e;. In other words, the leading coefficient of the amplitude normalized IQF is con-
strained to be unity, independent of §. This constraint (which is also imposed in conven-
tional PEF where the first coefficient of the prediction error filter is unity) eliminates trivial,
unrealistic solutions to the problem of minimizing £(§™!). The solution must now depend on
;.

Given the function E'( Q“l) defined by equations (6), how does one compute the minimiz-
ing ©7!? First, note that we have defined £ to be a function not of 2 but of @7!; this
definition is intended to make the following derivation less cumbersome. To simplify notation,
we define the new variable y = !, Secondly, note that e; as defined by equations (4) and
(6b) is a non-linear function of . Therefore, the equation df/ dvy = 0 is non-linear in v. We
shall solve this equation for -y by iteration. Define a current estimate ¥ and a perturbation

Ayby vy =% — Ay. Then

[ d 12
Ey) = Y e & Y ey —A7d—e;—(7)
¢ t

and the minimizing Ay is

Ay = T ()
t
% ‘—]d7

t

The iteration implied by these equations is roughly (but not quite) Newton's method for find-

ing a zero of a non-linear function.

A good approximation to the required derivative de,/ dy may be found from equations
(4) and (6b):
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de of
'# A omt[(g; —gobs) * er] N — P! (8)

The latter approximation, justified by the definition of g; in equation (5), yields the following

equation for the perturbation
Ay=-> w275 (9

Equation (9) is equivalent, excepting differences in notation, to equation (11) of SEP-28.
We expect this equivalence because equations (3) and (4) are equivalent; our criteria for
estimating 7 (i.e., that Ay = 0) must not depend on our choice between two equivalent IQF

algorithms.

Recall our earlier assumption that x; is the result of deconvolving the source waveform
w; from y;. Because w, is typically unknown, QAD must iteratively estimate w, along with 7.

The following iterative algorithm was proposed in SEP-28.

Initially Y =7, and y; is a divergence~-corrected seismogram
M z; = IQF(y:)
(2) Ty = PEF(z;)
" Zt:t"'t"’t—l
@ == 2 2 tArE,
(4) Yy =y-by
(5) If |Ay| > small go to (1)

Converged 7¢ is the deconvolved seismogram

PEF in step (2) of the algorithm is the conventional, unit-lag, prediction error filtering
subroutine. Because PEF is a statistical process which performs best on stationary data, we
apply PEF after IQF, even though the model of equations (1) implies that the source
waveform must be deconvolved before IQF. In fact, according to our model, the spherical
divergence correction (effectively conversion of a point-source response to a plane-wave
response) must be performed after both PEF and IQF. The problem is that time-varying
filters do not commute; however, because IQF and divergence correction are typically only
weakly time-varying, the error in assuming commutativity is usually negligible, particularly if a

short prediction error filter is used in step (2).

Note that in step (3) we have not bothered to compute the exponentially damped e; of

equation (9), but have used the undamped 7; instead. Aside from avoiding some
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computation, use of r; speeds convergence of the algorithm by placing more emphasis on
the later samples of r; where attenuation has its greatest effect. Application of the above
QAD algorithm to synthetic traces in SEP-28 demonstrated convergence in about six itera-

tions to a correct y & 0.01, starting from an initial guess of v = 0.

QAD as outlined above is an intuitively reasonable process. Conventional, unit-lag PEF

computes [, prediction error filter coefficients such that

Y, =0 ;7=1,2,8, -, L (10)
14

QAD computes one more parameter, 7, by further requiring that

zt’rﬂ‘t_l =0 (11)
¢

If the input seismogram were stationary, then equations (10) for + = 1 would imply equation
(11); and -y would equal zero -- no attenuation. When attenuation is present, however, the
temporal averages in equations (10) are not equivalent to the desired ensemble averages;
equations (10) then do not imply equation (11), and the simultaneous satisfaction of condi-
tions (10) and (11) enhances the stationarity of the output r,. Because attenuation pro-
duces a smooth, exponential spectral trend, the first lag of the autocorrelation (7 = 1) is

most sensitive to changes in -y and, hence, plays the most important role in these equations.

Clipped inverse Q-filtering for noisy (real) seismograms

The success of QAD in deconvolving computer generated synthetic seismograms is
encouraging, but the effectiveness of QAD applied to field recorded seismograms must
depend on the validity of our model given by equations (1). Although this model is closer to
reality than are models which ignore attenuation, one obvious shortcoming is the omission of
ambient noise. In conventional PEF, we inhibit the inversion of the source waveform at
noise-dominated frequencies, typically by '"pre-whitening' the autocorrelation of a seismo-
gram. Effectively, the gain applied by PEF to any spectral component is limited to a maximum

value.

A similar method for limiting or clipping the gain of an IQF is required for practical appli-
cation of QAD to real seismograms. For example, one can easily show that the unclipped IQF
of equations (2), (3), or (4) amplifies the Nyquist frequency by a factor of ® 7 x 10% when
t/ @ ~ 10. For typical § ~ 100 and typical seismogram lengths greater than 1000 samples,

seismic data is seldom pure enough to warrant the use of unclipped IQF.

SEP-30



Hale 141 Gadaptive deconvolution

As shown in the appendix, one may achieve clipped IQF by replacing the convolutions

g: * x; in equation (4) with

Z Gts Lt—s

s=0
The analogous replacement is required for g, * (g, * x,), etc. The time-variable filter g, is
defined by

0 , 8 <0
a;(1-a,;) , s=0 (12a)
—2sin?(mra,s)/ (ns)? » § >0

i

Gis

where

1 @inC

g, = min
t ot

(12b)

and C is the clip, the maximum gain to be applied at any frequency at any time. Compare
with equation (8) to verify that clipped IQF is equivalent to unclipped IQF for
172 < YInC/ 7it. The time-variable amplitude spectrum of the clipped IQF for C = 100 (40
db) is plotted in Figure 1 for ten different ratios of £/ Q.
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FIG. 1. Time-variable amplitude spectrum, plotted for ten different £/ @, of an inverse Q-
filter clipped to a maximum gain of 40 db.
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The QAD algorithm is essentially the same with clipping as without, the only difference

being that de;/ dy in equation (7) used to compute the perturbation Ay should be approxi-
mated by

de; =l
— R 7t e
d‘}’ ‘ sz=:lgts t-s

As before, in computing Ay, one may replace the exponentially damped e; with the undamped

T¢.

Application of Q-adaptive deconvolution to field data

Plotted in Figure 2 is a constant-offset section taken from high-resolution land data.
The seismic source was dynamite. The sampling interval is 0.5 msec; the trace length is
600 msec. The recording sampling interval was 0.25 msec. We subsampled the data to
reduce storage and computations; spectral analysis of this data revealed little signal con-
tent above 600 Hz, even at early traveltimes, so subsampling did not distort the signal band.
The data has been corrected for spherical divergence, and static time-shifts have been
applied to flatten the event at & 0.17 sec. To enhance the display of late events,
exponential gain was applied to the section of Figure 2 to obtain that of Figure 3. To permit
close comparison of this section with processed sections, enlargements of the first and last

250 sec of Figure 3 are plotted in Figures 4a and 4b.

The section plotted in Figures 5a and &b is the result of applying conventional, unit-lag,
time-invariant PEF (spiking deconvolution) to the divergence-corrected traces of Figure 2.
Each prediction error filter was 12.5 msec (25 samples) long and was computed indepen-
dently for each trace from the autocorrelation of the entire 500 msec. The output traces
have been lowpass filtered after PEF to attenuate frequency components above 600 Hz,

and exponential gain has been applied for display as in Figures 4.

Even within the 600Hz frequency band, the data of Figure 5b is far from the "white"
output we expect from unit-lag PEF. The attenuation of high-frequencies with increasing
traveltime is clearly evident, more so, in fact, on the "deconvolved” section of Figures 5
than on the input section of Figures 4, even though the prediction error filter is time-
invariant. This effect is expected whenever the source waveform spectrum is dominated by
a few frequency components, as is the case when near surface reverberations (which we
include in the term "source waveform'') are present. Imagine a seismogram for which the
source waveform is a fairly narrowband filter. Prior to deconvolution, attenuation would

appear only as an exponential amplitude decay with traveltime. Only after deconvolution of
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the source waveform would attenuation yield the event broadening effect seen in Figures 5.
Also, the fact that no time-variable gain other than spherical divergence correction was
applied to the input traces implies that early events most influenced the design of each
prediction error filter; gain applied before PEF might increase the resolution of late events in

Figures 5, but only at the expense of over-amplifying high frequencies at early times.

To test the conventional windowing method of handling non-stationarity, we applied PEF
to five overlapping windows of each trace in Figure 2. The windows were 150 msec long
and, after PEF, were blended linearly in the 62.5 msec overlap. An independent prediction
error filter was computed from the autocorrelation of each window of each trace. The out-
put section, with lowpass filtering and exponential gain applied as in Figures 5, is plotted in

Figures 6a and 6b.

The differences in Figures 6a and 6a, the first 250 msec, are minor. In the last 250
msec, however, Figure 6b exhibits notably broader frequency bandwidth than does Figure
56b, suggesting that some compensation for attenuation is possible. If a goal of this seismic
survey is to finely resolve the deeper reflectors, then Figure 6b is preferable to Figure 5b.
Our method of increasing resolution, however, leaves much to be desired. Our chosen win-
dow length of 150 msec may or may not be optimal. On the one hand, attenuation may be so
severe that a shorter window is desirable. On the other hand, a 150 msec window may
already be too short for the 12.6 msec prediction error filters we have used; the filters may
be removing "local color” in the reflection coefficients. One can easily find seismograms for

which any rule of thumb used to determine the window length breaks down.

QAD represents an alternative to windowing. The section plotted in Figures 7a and 7b
was obtained by applying QAD to the divergence-corrected traces of Figure 2. Lowpass
filtering was applied as in Figures 6 and 6. Exponential gain was not applied, because QAD,
in compensating for attenuation, automatically amplifies the events at late traveltimes
whenever the estimated & is positive. The entire section, with @ ! estimates for each

trace, is plotted in Figure 8.

In applying QAD, the length of the prediction error filter was again 12.5 msec; and the
IQF was clipped to a maximum gain of 60 db. The final estimate of y = @~ for each trace
was used to start the algorithm for the next trace. The initial estimate for the first trace
was ¥ = 0.01; estimates for dead traces were left unchanged. Typically, only one iteration

per trace was required to converge to |Ay] < 0.0005.

Comparing time-invariant PEF with QAD, we see little evidence in Figures 7 of the
attenuation found in Figures 5. Figure 7b exhibits significantly higher detail in the later
events than does Figure 5b. The trace to trace correlation of events in Figures 7 implies

that high-frequency signal, not merely ambient noise, has been enhanced by QAD. Comparing
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conventional, time-variable PEF with QAD, we again see notably higher resolution in Figures 7

than in Figures 6.

Aside from increasing resolution by compensating for the attenuation of high frequen-
cies, QAD also reduces the frequency dispersion associated with inelastic attenuation. As
noted by Robinson (1979), "dispersion effects on field data can create false seismic events
as well as mask true events." With this statement in mind, notice the "event" at ~ 300 msec

apparent in both Figures 5b and 6b, but which is much less apparent in Figure 7b.

How meaningful are the §~! estimates plotted in Figure 8?2 The well-known similarity
between the effects of inelastic attenuation and those of intra-bed multiples implies that
our estimate is more or less contaminated by the latter, depending on the unknown reflection
coefficients. Furthermore, our estimate remains sensitive to high-frequency, ambient noise
neglected in our seismogram model, in spite of our use of clipped IQF. We emphasize, how-
ever, that even if the @ ! estimates provided by QAD are only weakly related to inelastic
attenuation, these estimates may still be appropriate for deconvolution. Just as the best
prediction error filter is, for noisy data, not the inverse of the source waveform, the best
Q! for QAD may not be the true earth @~!. And if QAD attacks intra-bed multiples along

with the effects of inelastic attenuation, so much the better.

Significance of the relatively small, trace-to-trace variations in @~ estimates could be
tested by comparing estimates for different constant-offset sections. These variations, if
related to geology, should be independent of source, receiver, or offset coordinates. This
test for independence has not been conducted for the data of this paper; a valid test would
be difficult because only three or four offsets per midpoint were recorded. The author is

currently seeking obviously attenuated seismic data with more offsets available.

Condlusions and future work

Q-adaptive deconvolution offers the following advantages over conventional, time-

varying prediction error filtering:
(1) QAD avoids the user-specified windowing or weighting of seismograms.

(2) QAD achieves time-variability by estimating only one more parameter per trace, @,
than does time-invariant PEF. Conventional PEF is made time-varying essentially by

estimating more than one "source waveform'' per trace.
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(3) QAD more effectively compensates for the attenuation of high-frequencies as well

as the accompanying dispersion effects.
(4) QAD reduces the need for ad-hoc gain corrections.
(5) QAD provides estimates of §.

The restriction of QAD to depth-invariant @ ! is unnecessary. Generalization to
smoothly depth-variable @~ ! will be discussed in a future SEP Report. Also, the author is
currently studying the problem of estimating § (earth £, not decon @) from noisy seismo-

grams.
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and lowpass (to 600 Hz) filtering have also been applied for display of (a) the first 0.25 sec

and (b) the last 0.25 sec. Note the loss of resolution with increasing time.
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FIG. 8. Conventional, time-varying prediction error filtering of the section in Figure 2.
bb.

Exponential gain and lowpass filtering were applied as in Figure 5 for display of
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those of Figures & and 6, particularly in last 0.25 where attenuation effects are greatest.
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Appendix

We seek a discrete representation g; of the causal filter g(f) having the Fourier

transform

G(f) = |f| +iH( S

To this end, we must constrain the bandwidth of | f | to avoid aliasing g; as well as to make
the Hilbert transform H(] f |) exist. We assume that the sampling interval is unity, and
define the real part of the bandwidth constrained G(f ) by

171, 151 <a
R(f) = {a yae<|f] <isz
0 s | Fl =102

alkf) - al(f/a)

where O < a < 1,2 and Il and A are the rectangle and triangle functions defined as in Bra-
cewell (1978):

1, |Fl <2
) =10, |f] =102

and

Ar) = 1) » TI(F)

The significance of the constant a lies in the derivation of clipped IQF. Note presently that,
for a = 1,2, R(f) equals the real part of G(f) over the interval —1/2< f < 1,2 and equals

zero outside this interval. The inverse Fourier transform of Z(f) is
7(t) = asinc(t) — a®sinc?(at)
which we may sample without fear of aliasing:

a(1-a) , L =0
Tt = | —sin®(rat)/ (mt)? , £ = £1,£2,£3, - - -

Recalling that a Hilbert transform in the frequency domain is equivalent to multiplication by
sgn(t) in the time domain, the causal filter g: is easily found from 7, by doubling r, fort > 0

and zeroing r, for £ < 0. Fora = 1.3

174 y L =0
g¢ = {-2/(wt)® , t =135, -
0 , otherwise
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which is equation (5) in the text.

The derivation of clipped IQF follows from our definition of £(f). Note that R(f) is
“clipped" to a maximum value of a. To clip the inverse Q-filter, we place an upper bound C

on the amplitude spectrum exp[mtR(f )/ @] by letting a depend on time £:

1 @inC

= min .
% 2t

which is equation (12b) in the text. The causal, time-variable filter Jis» Where now s
denotes the Fourier dual variable to f, is again found by doubling r; for s > 0 and zeroing 7

fors <O:

] , 8§80
(lt(1—‘llt) , 85 =0
—2sin®(rays)/ (ns)? » § >0

{H

Gis

which is equation (’1 2a).
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