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‘Migration of non-zero-offset sections
for a constant velocity medium

Dave Hale

Abstract

The first step in migrating a zero-offset seismic section p(h=0,y,t) via the Stolt
(1978) or Gazdag (1978) algorithms is a two-dimensional Fourier transform over midpoint y
and time f{. Assuming that the midpoint transform is performed first, we show that migration
of non-zero-offset (h % 0) sections may be accomplished by replacing the temporal Fourier

transform with the more general transform:
glky,0) = [dt plhk,t) A" etetd

where

|' 2 2.2 ]1/3
ah UKy ]
= h k., = —

A = Alhky,w) I1 ere) 2 JJ

and where w is temporal frequency, k, is midpoint-wavenumber, k is half-offset, and v is
velocity assumed constant. q(ky,w) is then migrated as if it were the two-dimensional
Fourier transform of a zero-offset section. One can readily verify that the general transform
reduces to the Fourier transform in the limit of zero-offset A = 0, and that it reduces to the
Fourier transform of normal-moveout-corrected data in the limit of zero-dip, &, = 0. In fact,

the above transform is accurate for all offsets and all dips.
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Introduction

Let p(h,y,t,z=0) denote the seismic wavefield recorded at the the earth's surface
z=0 as a function of half-offset h, midpoint y, and time £. We define the migration of this
data as the mapping from p(h,y,t,z =0) to p(h=0,y,t=0,z), a process which can be per-
formed by first extrapolating the wavefield p(h,y,t,z2=0) to obtain p(h,y,t,2) and then
extracting the zero-offset and zero-traveltime section p(h=0,y,t=0,2). The extrapolation

step can be performed via

p(ky ky,0,2) = g %= (kn by )7 plky ky 0,2 =0) (1a)

where k, is the "double square root" (DSR) extrapolation operator defined by

2 ]z/e

o 172
z(ky —kh)21 + l‘l - ‘:wz (ky + kh)z} } (1b)

T
ke = 'Uw{r_llw

v is the earth velocity which we assume constant, and p(k,, ,ky,w,z) is the Fourier transform

of p(h,y,t,2z) defined by
plhpkywz) = [dh e ™" fay e ™Y fdt e*ivtp(n,y,t,2)

Integrating over w and k, and Fourier transforming over k, (ignoring 27 normalizations)

yields
P(h=0,y,t =0,Z) = fdky Q+ikyy fdkh fdwp(khskyswsz)

We refer the reader unfamiliar with the concepts associated with these equations to several
tutorial papers in SEP-25 (Claerbout,1980,p.285-315).

Several authors, including Judson et al {1978) and Yilmaz and Claerbout (1980) have
noted the difference between migrating before stack via equations (1) and the more con-
ventional process of migrating a common-midpoint (CMP) stack of normal moveout (NMO)
corrected data. The difference (i.e., the error in conventional processing) is, to first order,
proportional to k,?lcyz/ w* (Yilmaz and Claerbout,1980). For k, = O (zero-dip) or k, =0
(zero-offset), the conventional process is accurate. But seismic data typically contains
energy at non-zero ky and k,, so the above mentioned authors developed clever additions
to conventional processing which they called "Devilish" or "pre-stack partial migration"
(PSPM).

PSPM plus conventional processing is not, however, equivalent to full migration before
stack. PSPM as described by Yilmaz and Claerbout is just the first order correction to con-
ventional processing, the error increasing with larger offsets and steeper dips. The purpose

of this paper is to describe a method for migrating non-zero-offset sections which, for a
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constant velocity medium, is accurate for all offsets and ali dips.

Two-step migration of p(h,y,t,2 =0)
We first rewrite the DSR extrapolation of equations (1) as follows:

gﬁcz (ky,we)z

q(kh’ky’w[]!z) = q(khsky:wo’z:o) (2&)

where k, is redefined by

2o [ vkg)"?

S G

1

(2b)

and g is defined by

nghg[ ’ngyg]—l 1472 _
yyee Uirn B @

G)5&)01+

That the two definitions of k, are equivalent can be verified by direct substitution. Our
motive for redefining k, in terms of a new frequency wg is that equations (2) represent the
conventional extrapolation we would use for zero-offset sections. Therefore, we consider

tg to be the Fourier dual of zero-offset traveltime .

Because we typically do not record zero-offset sections, we need equation (3) to
transform recorded frequency w (or time t) to zero-offset frequency wg (or time tg). In
other words, we use equation (3) to transform the recorded data p(ky,ky,w,2 =0) to zero-

offset data g (ky,k, ,wg,2 =0). To perform this transformation, let
plhy,t,z=0) = f(hy,t,t;=0)
and let
q(h,y,tgz=0) = f(h,y,t=0,)

Then, think of equation (3) as a dispersion relation representing a partial differential equa-
tion which enables us to compute f (h,y,t,tg) from p(h,y,t,2 =0) = f(h,y,t,t;=0). Finally,
extract the t = O portion g{h,y,tg,2=0) = f (h,y,£=0,t5). All together,

q(kh,ky,to,z =0) = fdw e-iw@(kh.ky.0)t0 p(kh,ky,w,z :0)

or, using equation (3),

q (kpokyoto,2=0) = fdwo

d —twgt
d_:;;—] e “@o Op[kh;kysw(kh)kyswﬂ):z=0] (4)
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By inspection,

q(kh’ky )wO:Z =0) =

d

We now show that q(h=0,y,t;=0,2) computed via the two-step method of equations
(2) and (5) equals p(h=0,y,t =0,2) computed via the one-step method of equations (1). In

fact, we can prove the stronger statement
q(h,y,to=0,2) = p(h,y,t=0,z)

From equation (1a)

plnky,t=0,2) = fdoe™ "™ p(p, g 0t0=0)

fdw g %aEnky )z fdcoo I (ke key s00,000)
and from equation (2a)

qknkyto=0,2) = [duwg ™ ® 0 1 (k, K, ,t=0,00)

fd g eikz(ky,uo)z fdw f(kh,ky,w,&)g)

p(kh chst =0,Z)

Therefore, the subsurface image obtained using equations (2) and (5) is identical to that

obtained using equations (1).

So why should we use the two-step approach of equations (2) and (5)? One disadvan-
tage of the one-step migration before stack implied by equations (1) is that no intermediate
results such as common-midpoint stacks are produced. As noted by Yilmaz and Claerbout
(1980), "an unmigrated CMP stack section helps the interpreter a great deal in resolving
spurious events on a migrated section due to inaccurate velocities.” Equation (5) provides
the desired CMP stack section while maintaining the accuracy of full migration before stack;
Just integrate gq(kj,,k,,wq,2=0) over k,. Because the extrapolation defined by equations
(2) is independent of k,, this integration may be performed before or after migration via

equations (2).

The transformation represented by equation (3) deserves closer examination. Stolt

(1979) noted that NMO correction corresponds to the frequency domain transformation from

’Uzkz 172
Wn
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Note that wg = w, for k, = O; i.e., equation (6) is a zero-dip version of equation (3). Now,
suppose we had recorded a zero-offset section g(h=0,y,q,2 =0) for an earth with one dip-
ping reflector with dip . In the frequency domain, all the energy in g (h=0,k;,w0,2 =0)

would lie along the line given by

'vlcy
2 o

sind =

The well-known substitution of v/ cosd for v in equation (6) will again make equations (3)
and (6) equivalent. However, for an earth with reflectors of different dip (or truncated
reflectors or point scatterers), no single cosine correction to velocity is valid. The strength

of equation (3) is its validity for all zero-offset emergence angles, i.e., all

27.2
'u]cy

2.9 —
cos*d = 1 —
a0

Converting a single non-zero-offset to zero-offset

In addition to the disadvantage of one-step migration already noted, namely the lack of
an intermediate CMP stack, a further disadvantage is the implied necessity of dealing with
all offsets and all midpoints simultaneously. The latter disadvantage also applies to the
transformation of equation (5). We would rather map each non-zero-offset independently to
zero-offset, just as we attempt to do with NMO correction. Such a mapping would be essen-
tial, for example, if only a single non-zero-offset section were available. We derive the

desired mapping in this section.

Using equation (5), we may express the transformation from p(h,y,t,z=0) to
g (h =0,y,fq,2 =0) in the following way:
g(h=0,y,t0,2=0) = [dh g(h,y,te2=0) (7a)

where g (h,y,tq,2 =0) is defined by

dw | ~ikh
e

g(h,ky,wo,2=0) = fdkh dog

p[h,ky,w(kh,ky,wg),z =0] (?b)

Equation (7a) is CMP stacking, so the transformation (7b) from p(h,ky,w,z =0} to
g(h,lcy,wo,z =0) represents a pre-stack partial migration (PSPM) which, unlike that
described by Yilmaz and Claerbout (1980), includes NMO correction and, more importantly, is
exact for all offsets and all dips. Note that each constant-offset section in equation (7b) is

treated independently but that computation of the zero-offset section requires the
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integration over h of equation (7a).

We may avoid the interpolation of p(h,k,,w,2=0) in equation (7b) by rewriting that

dw l o LFn dey q)t ~ikeph . (8)
dwo

We should perform the data-independent integration over k;, analytically. Differentiating

equation as

g(h,ky,t5,2=0) = [dt p(hk,,t,z=0) [dk,

equation (3) with respect to wq yields

@
do _ 20 sec?y — “—tan?y
dwy & g
where
vk
sing = —-
2wg

So the integral we wish to evaluate is

i Q(kh ,ky ,Uo)t —’I'.khh

)
I = fdlch =2 sec?s — L-tan?y| e (9)
W o
Unfortunately, an exact evaluation of this integral can only be expressed in terms of hyper-
bolic Bessel functions. Assuming that we would ultimately use asymptotic approximations to
these functions, we may approximate / directly using the method of stationary phase. The

phase of the integrand is stationary at that k;, = ]:n for which

ow .o _ h
akh (kh,ky,w(]) - t

Partial differentiation of equation (3) with respect to k,, yields

~ Ah cos?y

kh = fuzt w(kh’kyawo) (10)

-~
or, solving for k;,,

—1/2

~ 4h cpcosy 2
= 02 {1 - 4? 5 €0s*d
vt t

v

Equation (10) may also be derived in the manner of Yilmaz and Claerbout (1980). Sup-
pose we Fourier transform a CMP gather. The most significant contribution in (kh,w)-space
from data near a point (h,t) in the gather would occur along the line given by

ky/ w = dt / dh where { is the dip-corrected traveltime given by
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2 1/2
4cos 9

(27 + h?)
v

Differentiating yields

kyn - 4hcos?Y
w vt
which is equation (10).

The integrand of equation (9) evaluated at the point of stationary phase k; = I;h is

(after some algebraic manipulation)

4p?
,Uztz

2 12
~1/8 iwotll - :gtz cosz'ﬁ]

1 - coszq‘}] e

=

and the complete stationary phase approximation to I is [see, for example, Carrier, Krook,
and Pearson (1966)]

172

I~ oA eiuotll - ::’; coszﬂ] + isgn(wg) :—
where
172 -5/ 4
87| wg | cos?y 4h? AR
A = 1 - 1 - cos?y (11a

[ vt v?t? vRt? )

which enables us to approximate equation (8) as
172
iwot[I - 4:'; cosz'd] + isgnlwg) Z—
v

g(h iy, ,wp,2=0) = [dt p(hk,t,z=0)Ae (11b)

Toward the goal of mapping a single non-zero-offset section to zero-offset, we choose to

replace the transformation (11) with

2 172
A = [ - :,:;2 coszﬂ] (12a)
g(hkyw0,2=0) = [dt plh,,t,z=0) A7 ™o (12b)

The differences between equations {11) and equations (12) lie in the amplitude factor
and the 71/ 4 phase shift. Our preference for equations (12) stems from their conventional
behavior in the limits of zero-offset and constant-dip. For zero-offset, g (h=0,k;,w5,2=0) is
simply the Fourier transform of p(h=0,,,t,2=0); therefore, as we might hope, PSPM

defined by equations (12) does nothing to a zero-offset section.
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For zero-dip, cos§ = 1, the change of variable

12

ap?
,Uz

t? —

t, =

in equations (12) yields
g(hoky,w0,2=0) = [dt, plhk,, VT + 4h%/ v,z =0) g0

In other words, for zero-dip, PSPM defined by equations (12) is just conventional NMO
correction. Furthermore, if all reflectors have dip ¥g, then the same change of variable with
v replaced by v/cosy¥; demonstrates that equations (12) again yield the expected

transformation.

How do we justify the use of equations (12) in light of the fact that the stationary
phase approximation of / and, hence, equations (11) are asymptotically exact in the limit
t » o, h/t fized? We have no rigorous justification, but note from their zero-offset and
constant-dip behavior that equations (12) apparently transform each non-zero-offset sec-
tion to a zero-offset section; i.e., g(h=hgy,ty2z =0) in equation (12b) is the zero-offset
section derived from the constant-offset section p(h=hg,y,t,2=0). In contrast, equations
(11) should yield a zero-offset section g(h=0,y,t;,2=0) only after integrating
g(h,y,ty,2=0) in equation (11b) over an infinite range of A [recall equation (7a)]. Because
the available range of offsets is typically limited, equations (12) represent the preferred
transformation. Indeed, equations (12), unlike equations (11), are accurate even if only one
constant-offset section is recorded, as the next section demonstrates with a synthetic

example.

A synthetic example

The transformation (12) is best illustrated by its time-variable impulse response. Plot-
ted in Figure 1 is a synthetic non-zero-offset section p(h=20,y,t,2=0) containing eight
evenly spaced impulses. For simplicity, we have chosen all sampling intervals equal to unity
and velocity v = 2. Geometrical optics predicts this section to be the result of recording

with b = 20 over an earth with semi-elliptical reflectors given by

(y — ) 2?2

[ 2t2} 2tz

where p(h=20,y,t,2 =0) contains impulses at (y;,{;).

=1 (13)

_hz
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FIG. 1. Synthetic non-zero-offset section p(h =20,y,t,2=0). This section would theoreti-
cally be recorded over an earth with semi-elliptical reflectors.

The result g(h=20,y,t,,2=0) of PSPM via equations (12) is plotted in Figure 2a. The
computer program used to generate this zero-offset section is given in the appendix. Note
that NMO correction alone could not have produced Figure 2a. Because only one offset was
assumed to be available, g (h=0,y,tg,2 =0) = g(h=20,y,t4,2 =0).

Figure 2b contains the result g(h=0,y,f,=0,2) of applying Gazdag's (1978) phase
shift migration to gq(h=0,y,f,,2 =0) of Figure 2a. The semi-elliptical shape of the reflectors
is obvious and one can readily verify using equation (13) that the lengths of the major and

minor axes are correct. As expected, the eccentricity decreases with increasing vl

For additional exampies of PSPM via equations {(12), we refer the reader to the follow-

ing paper in this report by Ottolini.
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Conciusions

The reader should verify that the transform described in the abstract is just a notation-
ally simpler varsion of equations (12). The frequency-domain, constant-velocity migration
algorithm for non-zero-offset sections resembles that for zero-offset sections, the only
difference being in the transform from time to frequency. Assumptions of small offset or
small dip are unnecessary, and the data may be left in offset coordinates. In particuiar,
transformation to radial coordinates (Ottolini, 1881) is not required. Offset coordinates are

particularly attractive when only a few offsets are recorded.

Equations (2) and (3) provide the foundation for the resuits of this paper. Previous
treatments of the non-zero-offset migration problem, such as that by Deregowski and Rocca
(1981), have been based directly on tha deuble square root extrapolation of egrations (1)

and have required assumptions of small offset or smalil dip.

Less accurate and, perhaps, less expensive PSPM algorithms, such as that given by Yil-
maz and Claerbout (1980), may be derived using equations (3) and (8). Briefly, the N
correction (6) may be extracted from equation (3) leaving a corraction which, to first order

(small ofiset and/cr dip), is proportional to lc,flcyz/ A

The most serious drawback to the non-zero-offset migration method described in this
paper lies in the restriction to constant velocity. The treatment of lateral velocity variations
is made considerably difficuit by Fourier transforming over midpoint, but the generalization to
depth-variable velocity should be easier. Ottolini (following paper) has attempted to treat
v = v(z) by replacing v in equations (12) with a root-mean-square velocity. As expected,
this approximation breaks down for large offsets or dips. An exact generalization to depth-
variable velocity must be based on a simultaneous use of equations (2) and (3). To date,
the author's attempts to exactly treat v = v(2z) have resuited in algorithms ton expensive

to be practical.
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Appendix

# Ratfor [Rational Fortran (Kernighan and Plauger, 1976)] program

# to convert a non-zero-offset section to a zero-offset section

implicit undefined (a-z)

Integer®4 it,iy,iw0,iky,ikyn,ikynyg,ny,nt,nky,nw0,itmin,iw0Omin

real*3 q(130,128),ky,dy,dt,dky,dw0,v,h,h2ov,twopi,w0,t,tmin,tmtm,arg,vkyo2
real*4 tt,h2ovs,scale,amp

complex*8 ¢p(128,128),cq(65,128),cwork(128),cshft

equlvalence (q(1,1),cq(1,1))

twopi = 2.%3.141593; ny = 128; nt = 128; nky = ny; nw0 =nt/2+1;

dy = 15 dt = 1,; dky = twopl/(ny*dy); Kkynyq = nky/2+1; dwO = twopl/ {(nt*dt);
v=2,; h =20, h2ov =h*2./v; h2ovs = h2ov*h2ov;

# specify test data (impulses)
op(26,64) = 1.; cp(37,64) = 1.; cp(50,64) = 1.; cp(62,64) = 1.;
ep(75,64) = 1.; cp(87.64) = 1.; cp(100,64) = 1.; cp(112,64) = 1

do it = 1,nt | # transform over y
doly = 1,ny
ework (iy) = cp(it,iy)
call cfft (cwork,ny,+1) #ny complex to ny complex fft
do kky = 1,nky

cp(itiky) = cwork(iky)

J

do ky = 1,Ikynyq § # for allky
lkyn = nky+2-lky #index for negative ky
ky = (ky-1)*dky #note: ky declared real*a

vkyo2 = v¥ky /2.

WOmin = max(int{vkyo2/dw0+1),2)

do w0 = iwOmin,nwO § # for all non-evanescent w0
wO = (Iw0-1)*dwo
tmtm = h2ovs*(1.~(vkyo2 /wO)**2)
tmin = sqrt{tmtm)

Itmin = tmin/dt+2 # lgnore data before tmin
do It = itmin,nt f # Integrate over time

t = (it-1)*dt

tt = t*t

scale = sqrt(1.-tmtm/tt)
amp = 1.fscale # the amplitude factor
arg = wOXt¥scale j# the phase shift
cshft = amp*cmpix(cos(arg),sin(arg))
eq(iwo,iky) = cq{iw0,ky)+ep(it,iky)*cshft
If (ky > 1 && Kky < ikynyqg)
cq(iwo,lkyn) = cq(iw0,ikyn)+cp (it ,lkyn)*cshft
]

do iwh = 1,nw0 # transform over ky
do ky = 1,nky
cwork (iky) = cq{iw0,iky)
call ¢fft (cwork,nky,-1)
doly = 1,ny
cq(iwO0,ly) = cwork (ly)
J

do iy = 1,ny # transform over w0

call rift (q(1,ly),nt,+1,+42) #nt/2+1 complex to nt real fft
open(3.file='/scr/hale/g20' status="new' ,access='direct',form="unformatted’ recl=1)
write(3,rec=1) ((q{it,iy),it=1nt),iy=1,ny)
stop; end
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