Chapter 3: Pre-Stack Predictive Multiple Suppression

3.1 Introduction

The 1960's saw the development of very sophisticated one-dimensional theories for
multiple reflection (Goupillaud (1961), Sherwood and Trorey (1965), and Treitel and Robin-
son (1966)). The failure of these sophisticated models to lead to practical results con-
sistently better than predictive deconvolution led in the 1970's to increasing attention to
the spatial aspects of the problem. Taner (1980) (also Harms, personal communication)
began by addressing the problem of offset with a radial trace theory. Riley (1976) intro-
duced migration operators to vertical wave stacks to handle the effects of dip. Estevez
(1977) extended Riley's results to slant stacks to incorporate the wider offsets found in

practice.

Both Riley and Estevez applied their wave theories to stacks, unlike the present thesis.
Plane wave stacking improves signal to noise and may have been essential considering the
computer power of the time. In retrospect, the results of Chapter 1 & 2 illustrate the impor-

tance of attacking multiples on unstacked data.

The goal of this chapter is to develop a pre-stack theory of predictive multiple
suppression valid for all angles of dip and offset. This goal is attained in Section 3.3 with
the derivation of a multiple dereverberation operator valid for all water bottom and pegleg
multiples. A full implementation of this operator is very costly because of its extreme gen-
erality. Nevertheless, it serves as a useful tool in understanding some of the prominent

predictive methods used in industry.

3.2 Replacement M edium Concept of M ultiple Suppression

The concept of a 'replacement medium" is used extensively in the geophysical litera-
ture. A well known example can be found in the study of gravity. In computing the Bouger
gravity anomaly, the actual density distribution in the crust is conceptually replaced to some
datum level by a uniformly dense slab. The Bouger anomaly is then computed relative to this
replacement medium. In this particular case, we are trying to simulate a zone of uniform
impedance to a datum just below the seafloor. This is consistent with the objective of mak-

ing the seafloor transparent to seismic illumination. The residual ""anomalies’ remaining from
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this process will be either primaries or (low amplitude) intrabed multiples.

In order to obtain further insight, we will digress briefly to explain the concepts of
"upcoming/downgoing" and "shot/geophone"” wavefields. Everyone has an intuitive idea of
what is meant by upcoming and downgoing waves. Mathematically, these terms are well
defined only if velocity is z-variable or constant. The question of direction then depends on
the choice of sign for the z-component of the propagation vector, k , when the dispersion

relation is factored. /.e. - Direction depends on the sign of

For media with laterally varying velocity we cannot make this definition. In practice,
however, this does not stop us from assigning the labels "upcoming" and "downgoing" to
wavefields. Provided we restrict ourselves to smoothly varying velocity distributions and
ignore waves with very high propagation angles, the notion of "upcoming’” and "downgoing"

wavefields seems to be well enough defined.

Under the common assumption of two-dimensional symmetry, the seismic data collected
in a field experiment is a function of five variables - two spatial variables for shot location,
another two for geophone location, and one for time or frequency. A "geophone'' wavefield
denotes a wavefield obtained by fixing the shot coordinates and allowing the receiver coor-

dinates to vary. A "shot” wavefield is a wavefield for which the opposite is true.

The pre-stack multiple suppression problem is one of the few areas of exploration
seismology where all four wavefield combinations (upcoming/downgoing and shot/geophone)
must be considered simultaneously. In contrast, post (slant) stack multiple attenuation uses
two wavefields - one upcoming and one downgoing (Estevez, 1877). Conventional migration
only uses the upcoming geophone wavefield (since the experiment is zero-offset and the

"explosive reflectors’ concept is invoked).

Let's return now to the concept of a replacement medium. The observed data is given
as a surface wavefield - downgoing in shot coordinates and upcoming in geophone coordi-

nates (Fig. 8.2.1). An important intermediate goal will be to simulate the seismic response

of a downgoing shol wavefield and an upcoming receiver wavefield - both just below
the seafloor. This is consistent with our final goal of simulating a transparent sea floor
since this can be obtained from the intermediate wavefield by upward continuing shots and

receivers from the sea floor datum to the sea surface.

Let's examine what this involves in more detail. The wave equation and the boundary
conditions at the sea surface and the sea floor provide all the necessary equations. Since

the pressure at the surface vanishes, the upcoming wave, U, is the negative of the
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FIG. (3.2.1). The observed data (left) can be thought of as a surface wavefield - downgo-
Ing in shot and upcoming in geophone coordinates. Simulating a transparent seafloor requires
that both these wavefields lie beneath the seafloor.

downgoing wave, D), at z=0. Now consider what happens at the seafloor, z =z,. We define
the symbols U and U/ to mean upcoming wavefields just above and just below the seafloor.

If ¢ is the reflectivity, and £ the transmissivity of the seafloor, we have (Fig. 3.2.2) that

U=tU+ceD (3.2.2)

FIG.(8.2.2). U = tU+¢cD
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Ignoring transmission effects then gives a boundary condition of

U= U-cD (3.2.3)

First note that in order to apply the boundary condition at the seafloor, = =z, we need
to have access to both U and D at that depth. Fortunately, because of the surface boun-
dary condition, the observed data gives us both the upcoming and the downgoing wavefields

at z=0. The basic steps in achieving our goal can now be stated.

(1) Downward continue the known upcoming and downgoing geophone wavefields
(common shot gathers) from the surface to the seafloor. This is done separately

for each different shot location.

(2) Apply the seafloor boundary condition, U= E’—cﬁlz=zf, to obtain an upcoming

geophone wavefield just below the seafloor.

(3) Upward continue the wavefield of Step 2 back through the water (as if the
seafloor wasn't there) in order to tie the primaries and residual multiples to the ori-
ginal data. (This is what is meant by the term 'replacement medium” in this sec-

tion heading).

Let's now direct our attention to Figure 3.2.3. From this figure we see that any pegleg
which bounces after going into the sub-surface would have to be recorded in the surface
geophone wavefield before executing that bounce. Such a multiple would be predicted in
step one. In fact, the effect of Steps 1-3 is to suppress all water bottom multiples and
most pegleg multiples. The only remaining pegleg multiples have raypaths which undergo all
of their seafloor bounces before going into the sediments.

To eliminate these remaining multiples, it is necessary to get the downgoing shot wavefield
below the seafloor. This is accomplished in the next step by appealing to seismic recipro-
city.

(4) Interchange shots and geophones. In practice this amounts to sorting the data into
"common geophone gathers” from the field data. Reciprocity tells us that the
upcoming receiver wavefields now become downgoing shot wavefields, and vice-
versa. In doing this we have automatically solved the problem of getting the
downgoing shot wavefield through the seafloor. Admittedly, we have created a
fresh problem (the problem of getting the new upcoming geophone field under the
seafloor). This, however, is a problem we have already solved in the first three

steps.
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FiG. (8.2.3). All water bottom multiples W,,Ws,... are predicted from events g, #,... on the
geophone wavefield. Pegleg multiples M, M3, - - - are also predicted from events M,,M,...
on the geophone wavefield. The multiple #,, however, cannot be predicted from any event
in the surface geophone wavefield. 1t must be predicted, instead, from the shot wavefield.

(5) Repeat steps 1-3, but with the common geophone gathers (shot wavefields)

instead of the common shot gathers.

3.3 Wave Equation M ultiple Prediction

The last section presented the general concepts involved in suppressing wide-angle

marine multiples. This section will build some mathematical structure into these ideas.

Section 3.2 argued that multiple suppression begins by downward continuing all the
geophone wavefields or “common shot gathers'. Consider, then, the problem of predicting
the seafloor reverberations from a single such field experiment (Figure 3.3.1). The total
pressure, P, recorded by the hydrophones near the surface is the sum of an upcoming wave,
U, and a downgoing wave, IJ. We'll decompose [/ and D into a sequence of reverberation
subfields, U; and [, with

U= YU (3.3.1a)
i=0
and
D=Y0D (3.3.1b)
i=0
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FIG. (3.3.1). Decomposition of upcoming and downgoing wavefield in water layer.

We impose the boundary condition that D; = —vgU;y at 2 = dg, the depth of the geo-
phones. In the absence of complications, v, = 1. More generally, vg accounts for geophone
ghosting effects - including a possibly imperfect reflection coefficient at the sea-surface.
The upcoming wavefield reflected from the seafloor at z =z, is U; = ¢gD);. The linear
operator, c,, accounts for seafloor reflectivity. Note that Vg,Cg,dg, and z; can be space
variable. We have not yet specified the mathematical parameterization of v and ¢ - we
have merely said that they are linear operators. If they are space-invariant, then both their

parameterization and computation simplify greatly.

Let i, and *g denote linear operators for the one way wave equation in the water. The
operator, b will serve to propagate a downgoing wavefield in geophone coordinates from
z=dg to z =2z. We define Tg @s the operator which takes an upcoming geophone wavefield
from z =z, to z=d,. Note that i and 1, are both diffraction operators. They differ in the

specification of their boundary conditions. ig terminates at the seafloor whereas Tg begins
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there. (If zy and d; are constant horizontally, then g = 7 DY symmetry). These relations

are summarized in equations 3.3.2-3.3.5.

Dilz=dg = —vg U, | z=d, (3-3-2)‘

Dil 2=z, = 4gDilz=q, (3.3.3)

Uilz:zf = C_:;,D«;|z=zJf (3.3.4)

Uileza, = g Uilz=2, (3.8.5)

Equations 3.3.2-3.3.5 give the result
Ui = =7gCglgVg Uio1] z=q, (3.3.6)
or (using 3.3.1a)

Ulz=g, = t.zs}(—w‘gcg%ug)" Uslz=a, = (1+79¢gigvg) ™" Uolaze, (3.3.7)

This analysis has ignored the reverberations in the vicinity of the shotpoints. To predict
them we appeal to reciprocity and equation 3.3.7. The total wave equation dereverberation
operator, Ay 5, is the product of the shot and geophone dereverberation operators - just as
for the Split-Backus model. In particular, the reverberation-free reflected wavefield near

the sea-surface is
UO = AW.E’. U (3.3.8)

where
AW.E. = (1 TTsCsis Vs:)(‘l 'H\g Cg ‘Lg Vg) (3.3.9)

Equation 3.3.9 is of considerable theoretical interest, since it shows how wave con-
tinuation operators, seafloor reflectivity, and array responses must be manipulated if we

wish to suppress multiples to all angles in offset and dip.

The reflectivity, ¢, and possibly, v, must be estimated from the seismic data in any
practical suppression technique. Although we can measure the seafloor's ultrasonic depth
very accurately, our knowledge of its effective seismic depth and reflection character are
usually not good enough to deterministically suppress multiples. One of the strengths of the
"seafloor-consistent” method of Chapter Two was that it automatically estimated the

seafloor's depth and character.
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Let's examine equation 3.3.9 in more detail. This equation is of the form

Aye =[1+ Op(s)][1 + Op(g)] (3.3.10)

Using reciprocity we can also write this as
Ayg =[1+ Op(g)]1[1 + Op(s)] (3.3.11)

The commutivity rule expressed in equations 3.3.10 and 3.3.11 is interesting but does
not really say as much as we would like. The main stumbling block to direct implementation
of 3.3.9 is the fact that the unknown seafloor reflection operators do not, in general, com-
mute with the deterministic wavefield continuation or "arrow' operators. The Split Backus
model of Chapter One made the simplifying assumption that 4, =1,=2%/%, 4, =1,=29/%, and
Vs=vg=1. (The Backus model itself makes the additional assumption that ts=17g). This
allowed us to isolate the wave prediction algorithm from the seafloor reflectivity estimation

procedure. Ideally, we would like to do the same thing in a more general case.

In Section 3.2 we pointed out that most of the multiples (all the seafloor multiples and n
of the n+1 branches of an n'th order pegleg multiple) are removed simply by making the
seafloor transparent to the geophones. This corresponds to implementing only the right hand
bracket of equation 3.3.9. All of the techniques we'll examine in the remainder of this

chapter use this approximation.

3.4 Pre-Stack/Post-Stack M ultiple Suppression

It is interesting at this point to examine the main differences between replacement
medium pre-stack techniques and the Riley/Estevez post-stack approach. We first note
that post-stack methods only require consideration of two wavefields - one upcoming and
one downgoing. These wavefields can be expressed in either shot or geophone coordinates

- depending on which coordinate has not been stacked out.

Post-stack methods, as proposed by Riley and Estevez, demand that the two wave-
fields be downward continued to maximum primary depth - applying the previously discussed
boundary condition, g= U—cD, at each level in 2. The output is an image of the primary

reflectivity structure, ¢ (z,z).

Finding c(z,2) is a considerably more ambitious goal than the goal embodied in the
replacement medium concept of Section 3.2. It involves the problems of multiple suppres-
sion, source waveform deconvolution, and migration - all at once. The replacement medium

approach attempts to isolate the first problem from the last two.
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The downward continuation of Riley and Estevez requires a knowledge of the velocity
structure everywhere in the section. Such knowledge is usually not available a-priori,
except for the water layer. The dereverberation operator (Equation 3.3.8) concedes this
fact. It says that if we are willing to work with all four wavefields, then our ignorance of

subsurface velocities need not hurt us.

3.5 Radial Trace M ultiple Suppression

We'll now review some of the more common "wave-predictive” multiple suppression
methods under the unifying view of the dereverberation operator of Section 3.3. All of these
methods have been designed to work in the domain of wide offset and zero dip. The main
difference among these various techniques lies in how the arrow propagation operators are

approximated. The first such method is called radial trace multipie suppression.(l)

A radial trace (Taner, 1980) is a trace sampled along a trajectory of constant
offset/time from a seismic profile. This method of multiple suppression is based on the fact
that, for a flat seafloor, water bottom multiples on a common shot gather have a reverbera-
tion time that is a function of their radial angle only (Figure 3.5.1). For a water column of
two way vertical traveltime, T, this delay is equal to T sec? where 49 is the selected radial
angle. All of the arrow propagation operators in equation 3.3.9 are approximated by this sin-
gle delay operator for radial trace prediction. If the earth were of constant velocity and
zero dip, then along a radial trace, all multiples would would mimic the zero offset, zero dip
model. Under these conditions, radial trace time delay constitutes a simple method of down-
ward continuation. For a depth-variable velocity earth, however, the pegleg multiples on a
radial trace cannot be expected to have the same characteristic reverberation times as the

seafloor multiples. Figure 3.5.2 demonstrates this fact.

Figure 3.5.2 shows an attempt to predict water bottom and pegleg multiples by delaying
radial traces by the amount T secd. A synthetic seismogram was created for a model of a
water layer of 0.5 seconds over a subsurface reflector at 2.0 seconds. The second layer
has an interval velocity of 9000 ft/sec. Radial traces were sampled up to a maximum angle
of 25°. (The reconstructed gather is truncated at this angle). Each of these radial traces
was then delayed by 0.5 secd seconds and subtracted from the non-delayed radial trace.
The angle here is defined to be the ray angle in the water layer. Figure 8.5.2 is the Carte-
sian coordinate reconstruction of all the radial space difference traces. Note that while the

seafloor multiples (at 1.0 and 1.5 sec.) are correctly predicted, the pegleg multiple

(1) Seiscom-Delta trademark is "RAMS"",
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FIG. (3.6.1). The reverberation time for water bottom multiples is Tsec® - a function of
angle only.
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FIG. (3.5.2). Attempt to suppress water bottom and pegleg multiples by delaying and sub-
tracting radial traces in a two layer model. Seafloor multiples (1.0 and 1.5 seconds) are
correctly predicted. Pegleg multiples (3.0 and 3.5 seconds) are not well predicted because
the sediment velocity differs from water velocity.
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predictions (at 3.0 and 3.5 sec.) are out by 50-100 msec. - even at modest offsets.

3.6 Zero Dip - Variable Velocity M ultiple Suppression

A better approximation to equation (3.3.9) which overcomes the constant velocity res-
triction of radial trace prediction has been proposed by Fourmann et al. (1979). To explain
this method within the context of equation (3.3.9) we first note that for a flat seafloor of
depth d, the propagation operators reduce to simple multiplicative factors in the

frequency-wavenumber domain. In particular,

T = dg = exp(i:‘j—d\ﬁ —S%) (3.6.1)
and
Tg = 4y = exp(iT-dV1-GP) (3.6.2)

where S = vks/w, G = vkg/ w, v is water velocity and ks, k, are the Fourier duals of shot

and receiver horizontal coordinates.

We now do something that at first seems unnecessarily complicating, but will lead to
simplification. We multiply the left bracket of equation 3.3.9 by the identity operator, i, -1
and the right bracket by i 4,71, This yields

Agp = (1 + 37505850 T M + 4t cgdgds T yg) (3.6.3)

This is legitimate since 4 and {;~! commute with cg, the seafloor coupling operator in geo-
phone coordinates and ig and g ~! commute with ¢;. The operators in equations 3.6.1 and

3.6.2 can be transformed to dip and offset (¥, H) space by the relations, (Yilmaz, 1979)
S=Y+H (3.6.4)
G=Y-H (3.6.5)

Y and H are defined by, Y = vk, /2w, H = vk,/2w , where k, and k; are Fourier duals of
midpoint,y and half-offset,h. Now substituting equations (3.6.4) and (3.6.5) into (3.6.1)
and (3.6.2) give the relations

Igts = 5Ty = exp[i%d(xh —(Y+H)? + VI-(Y-H)?] (3.6.6)
and
dgis 1 = ezp[i—:}id(\h —(Y—-H)Y — V1-(Y+H)?] (3.6.7)
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Expanding the square root arguments of | Ty and 4g g ~1 gives

YE
\/1 —( Y+H)2+\/1 '—( Y"[‘])2 = 2\/1 —H2[1 —m+ 0( Y)4 ] (3.6.8)
and
VIS BT = 21X pcpye .
1—(Y+H) 1—(Y-H) Vio? +0(Y) (3.6.9)

In the limit of zero dip, (¥=0), equations (3.6.6) and (3.6.8) imply that
_ 2iwd oz
vlas‘(‘g = exp(—r 1-H®) (3.6.10)

Similarly, equations (3.6.7) and (3.6.9) give
dgis Tl = (3.6.11)

This means that for small dip, (neglecting ghost responses), either one of the brackets in
equation 3.6.3 can be implemented by applying the single diffraction operator,
sty (=ig7), to each common midpoint gather and taking the residuals between the dif-
fracted and original gathers. Since gl “1 and ¢s¢g_1 are identity operators in the limit of
zero dip, Ay r can be much cheaper to implement than equation 3.3.9 might originally sug-

gest.

An example of this process is shown in Figure 3.6.1. This example uses the same model

as in Figure 3.4.2. Both the seafloor and pegleg multiples are now properly predicted.

It is interesting to note from equation 3.6.5 that the above scheme could be extended
to first order in dip by implementing the operator, dgis ~1, as a time and offset dependent
midpoint shift. This could be done by approximating X in the space-time domain as
f? = 2h/vt. The expression for the phase of dgis ~1 in equation 3.6.9 then becomes

28y

i o

which represents a (time and offset dependent) midpoint shift.

3.7 : Example ~ Common Shot Gather M ultiple Suppression

This section shows some practical results obtained by approximating the dereverbera-
tion operator of equation 3.3.9 with its right half only. In particular, we consider the opera-

tor
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FIG. (3.6.1). Suppression of multiples by the zero dip method for the same model as Figure
3.4.2. A prediction image of the multiples was created by F-K continuation of the surface
data to the seafloor. Both seafloor and pegleg multiples are now well predicted. High dip
segments of the seafloor muitiples are not well cancelled since dip filtering of the prediction
image is required to attenuate edge artifacts.
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Ay = (1 + 3gcyTg V) (3.7.1)

We make two additional approximations. The first one is to set vg = 1. The second is to
allow cg to commute with J,. The reflectivity is estimated in the time domain as the shaper
filter which minimizes the L, error between the observed wavefield, 1, and the wavefield,
igTgD. Since the bottom is flat in this example, ;7 is given by

vk,

sgty = explioT\/ 1=( wg )?) (3.7.2)

where T is the reverberation time of a vertically incident plane wave.

Spatial aliasing and boundary truncation phenomena are always a problem when wave
operators are applied to discrete, finite datasets. F-K methods are no exception. Figures

3.7.1 to 3.7.3 will show how some of these practical difficulties were overcome.

Figure 3.7.1 is a common shot gather from the Norwegian Barents Sea. Four water bot-
tom multiples are readily apparent. There are some primaries but they are very difficult to
detect pre-stack. The first operation consisted of linear interpolation of the data in NMO
coordinates. Data extrapolation was performed by simply replicating the two outermost
traces and applying a linear taper from the original data boundary out to the new edge (Fig.
3.7.2). Inverse NMO was then performed to obtain Figure 3.7.3. Although some of the
events in Fig. 3.7.3 clearly have jump-slope discontinuities at their suture zones, the strong-
est amplitude events (water bottom multiples) are correctly extended. It is better to

extend the weaker events with an incorrect slope than to simply truncate them.

Figure 3.7.4 is the result of F-K diffracting the dataset in Fig. 3.7.3. No edge effects
are apparent. Wraparound was avoided by zero-padding Fig. 3.7.4 to twice its width. Figure
3.7.6 shows two common shot gathers before and after multiple suppression. Some addi-
tional event enhancement was obtained by rejecting high negative dips before designing the
shaper filters. This explains the absence of the 'zippered' texture quality from the

multiple-suppressed section.

Figures 3.7.6 and 3.7.7 are the NMO-stacks of the original and multiple-suppressed
sections. The earliest event is the direct arrival. The water bottom begins at 600 msec.
There are two strong dipping primaries - one at 1.5-1.8 seconds - the other at 3.8-4.1
seconds. Both have pegleg multiple trains associated with them which have been
suppressed in the processed stack. After multiple suppression we see a hint of some pri-

maries dipping to the right from the left edge of the section between 2 and 3 seconds.
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FIG. (3.7.1). (left) Common shot gather - Barents Sea. Fig. (3.7.2) (right) Extrapolated and
interpolated gather in NMO coordinates. NMO done at water velocity.
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FIG. (3.7.3). (left) Inverse NMO gather from Figure 3.7.2. Fig. (3.7.4) (right) F-K diffracted
and dip-filtered version of Figure 3.7.3.
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FIG. (3.7.6). NMO-stack - before multiple suppression.
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3.8 Slant Stack M ultiple Suppression

A third approach to predictive multiple suppression for flat dip and wide offset data
uses slant stacks (p-gathers) as input. The underlying principle for this method is the fact
that slant stacks preserve the uniformity of the multiple reverberation period. Figure 3.8.1

itlustrates this geometrically.

The four hyperbolae in Figure 3.8.1 represent the primary and pegleg reflections for the
ray paths shown to their left. The lines FA, FD, E'A» and F'D have all been constructed
tangent to arrivals with common slowness, p,. The distance, |AC| = | A'C'|, since both of
these lines represent the two-way traveltime of a ray of constant ray parameter, Po>
through the top layer. The horizontal excursion of this ray in the top layer is
|CD| = |C'D'|. Now, <ACD = <A'C'D' =90°, |CD| =|CD'| and <BDC = <B'D'C. This
means that triangles BCD and B'C'D are similar and, in turn, that
|AB| = |A'B'| = |EF| = |E'F'|. This gives us our claimed result - the slant stack
preserves multiple reverberation times for a flat-layered earth. Similar principles can be

used to extend the result to a model with any number of flat layers.

Performing a slant stack fixes the ray parameter, p, which is equivalent to fixing S or
G in equations 3.6.1 and 3.6.2. This means that the arrow operators for any particular p-
trace of a p—7 gather are pure time delays. If we assume that ¢ and 1 are functions of
angle rather than space, then ¢ and v commute with the wave propagation operators. In this
case the brackets of equation 3.3.9 can be implemented with trace by trace predictive

deconvolution or any other one-dimensional theory.

To the author's knowledge, few applications of this slant stack technique to real data
have met with any real success. This seems surprising since the method should be capable
of handling the angle dependence of ghost and mud-layer responses. It does this, however,
by neglecting all but the most smooth variations in seafloor reflectivity. We might speculate
from this that, for most real data, it is better to ignore the angle-dependent rather than the

space-dependent effects of the seafloor.

3.9 Summary

In this chapter we derived a multiple dereverberation operator valid for wide angles in
both offset and dip. A complete application of this operator to a seismic dataset is
equivalent to simulating the upcoming geophone response to a downgoing source field with
both sources and geophones placed below the seafloor. The operator combines the effects

of wavefield propagation, seafloor reflectivity, and ghost responses.
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FIG. (3.8.1). A two layer model with v,>v,. Note that the time separation, P, ¥, is not
equal to the separation of PyM, on the radial trace ( |AG| # |A'G'| ). Nevertheless, an
ideal slant stack preserves a uniform reverberation period (i.e. - | EF| = | E'F'|).

The general dereverberation operator is too expensive to implement except in certain
special cases - the most important being the limit of zero dip. The three most popular predic-
tive methods in industry - radial trace, zero dip F-K prediction, and slant stack prediction all
make the zero dip assumption. The methods differ in their assumptions about sediment velo-

city, and seafloor and ghost responses.

Another common approximation to the full dereverberation operator is to simulate the

response of only one field below the seafloor. In theory, this removes all of the water bottom
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multiples and n of the n+1 components of an n'th order pegleg multiple - for only half the

cost of the full job.
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3.A A Scattering Theory Interpretation

For those favoring the inverse scattering approach to seismic inversion, the derever-

beration procedure of Section 3.3 may be interpreted as follows.

We assume that the Lippmann-Schwinger expansion (Clayton and Stolt, 1981) for the
observed data, 1), can be approximated by:
D=3 Y (Go Vo VIEGVG(VGy VGo) (3.A.1)
1=0j=0
The term "GVG" in the centre of the expansion denotes the primary observations at the
sea surface. V = —1 is the free surface potential. Gy is the constant velocity Green's
function for propagation in water. The "0’ subscript emphasizes that - unlike & - this is a

knouwn Green's function. 9 is a potential which is assumead to have support only in the

vicinity of the seafloor. It is estimated from the data by solving the problem
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min | | DG, 1= DVG, V| |2
Now define .
D1=(DGy ' —DVGo N Gg
Note that if ? has been correctly estimated, then
D, =SNG VG VY GVG
i
We now find

Da=Go(Go 1D, = VGo VD) =(1 =Gy VG, V) D,

=GVG
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