Chapter 1 : The Split-Backus Prediction Operator

This chapter presents the theory of the Split-Backus (SB) prediction model. It then
examines some real data where seafloor topography is clearly a first order effect in the
pegleg multiple arrival times - a fact which few predictive methods in the literature have
exploited to date. The chapter goes on to look at a number of statistical procedures for
handling the multiple suppression phase of the problem. These methods are not as poten-
tially powerful as the '"seafloor-consistent” suppression technique of Chapter 2 but their

use may be appropriate when ease of implementation and cost are prime considerations.

1.1 Derivation of Split-Backus Operator

The classical one-dimensional approach to modelling a water-confined reverberation
spike train uses the Backus "‘three-point" operator (Backus,1959). The assumption is that a

reverberation filter with Z-transform

00 . 1
R(z) = ), (—cz")* = —— (1.1)
igg 1+e2™
operates on the primary response twice prior to observation — once as the source energy
passes through the sea-bottom into the sediments and a second time on return to the hydro-
phones. The reflection coefficient at the sea-bottom is ¢ , (| ¢ | <1), and n is the two-way
traveltime of the water column in time samples. The filter which cancels these reverberation

poles is the three point dereverberation operator

Dpackus = (14€2™)° = 1+2c2™ +c22%" (1.2)

This analysis ignores the fact that both water depth and seafloor reflectivity can

depend on shot and geophone locations (Figure 1.1).

The dereverberation operator,

Aspiit Backus = (1+c52%)(1+c,29) (1.3)

where ¢; and cg, are the seafloor reflectivities at the shot and geophone locations, is
obtained by a direct extension of the reverberation model. The symbols, 2% and 29, are the

Z-transforms of the vertical water column delays at the shot and at the geophone. The
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FIG. 1.1. Water depth and seafloor reflectivity as functions of shot and geophone location.

chief approximation here is that the water reverberation paths are indeed nearly vertical
(Fig. 1.1). This is a poor approximation for wide-angle water bottom multiples. It is, however,
valid for many types of pegleg multiples. The reason the Split Backus (SB) model works
where apparently more sophisticated techniques fail is because it recognizes that z° and

z9 may be different.

1.2 Split Peglegs : A Data Example

The next two figures show that split pegleg multiples are an observable phenomenon on
real data. Figure 1.2 is a near trace section from a line of offshore Labrador (Flemish Cap)
data! on which two strong pegleg multiples can be seen cutting across the section between
2.6 and 3.5 seconds.

Figure 1.3 is a constant offset section (COS) from the same line for an offset half-way
down the cable (a separation of 45 shot points with this geometry). The first order pegleg

multiple starting at 2.5 seconds on the left and running across to 3 seconds on the right is

(1) courtesy of Amoco Canada Ltd.
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FIG. (1.2). Near Offset Section - offshore Labrador. Offset distance is about 9 shotpoints.

Labelled events are SF-seafloor, BM1-first bottom multiple, BM2-second bottom multiple, P-

primary, PM1-first pegleg multiple, and PM2-second pegeleg multiple.
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FIG. (1.3). Constant Offset Section (COS) from same line as Fig. 1.2. Offset distance is

about 46 shotpoints. Notice that the first order pegleg multiple is now split into two distinct
arrivals, P 1s and PH1g.
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Figure 1.5 is a pegleg multiple model of the COS of Fig. 1.3 windowed from 2-4 seconds.
It was obtained by delaying one copy of the COS by the two-way water time estimate at the
shot location, delaying another copy of the COS by the estimated reverberation time 45 shot
points down the line (the hydrophone locations), and superposing the two data fields. The
low velocity water bottom multiples were removed by dip filter pre-processing. The arrival
times of the predicted first-order peglegs match the data peglegs to within a quarter
wavelength of the dominant seismic period (i.e.-within 8-10 msec.) across the section. The
predicted peglegs consistently precede the data peglegs. This is to be expected since the
actual reverberation paths for the constant offset section are at a slight angle to the verti-
cal.
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FIG. (1.5). Split-Backus multiple model of constant offset section obtained by superposing
two independently delayed copies of Figure 1.3. The delay times are obtained from Figure

1.4. The predicted first order peglegs match the corresponding data peglegs to within one-
quarter of the dominant period,
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1.3 Estimators for Seafloor Reflectivity

In the general introduction we noted that predictive multiple suppression consisted of
two steps - a prediction step and a subtraction or suppression step. Now that we've seen
that split pegleg multiples do indeed exist and can be explained by an SB model, we turn our
attention to the problem of suppressing these multiples; i.e., estimating the seafloor reflec-
tivity, c. We examine how well three different estimators for the SB deconvolution operator
work on the constant offset section of Figure 1.3. In the same way that conventional

predictive deconvolution estimates the Backus operator,
Ag = (1+cz™)? (1.4)
by
Ag = (14+282™) (1.5)
all of these estimators will ignore the term in Es 6;, in the expansion of the SB operator,
Asp =(1+cszs)(1+cgzg) (1.6)

The three estimators we'll examine may be defined by

Ay = (1+6(25 +29)) (1.7)
Az = (1+8(£)(25 +29)) (1.8)
Ag = (148,25 +8,29) (1.9)

The estimator of equation 1.7 is the solution to the least square shaper filter problem
min £, = | |d—¢*m | |? (1.10)

where d denotes the original data and m., the multiple model (#M(2) = D(z)}z%+29)). This
is equivalent to predictive deconvolution except that the multiple model is now composed of
two, rather than one, independently time delayed versions of the data. The result, using a

60 msec. filter, is shown in Figure (1.6).

This does a reasonably good job of attenuating the multiple on the left (flat seafloor)
side of the section but fails over the dipping-seafloor zone. It unfortunately offers no
improvement over a comparable predictive deconvolution - which fails in much the same

places (Figure 1.7).

The second estimator (equation 1.8) involved a weighted least squares fit of the model

to the data. The error norm:
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FIG. (1.6). Residual after
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FIG. (1.7). Predictive deconvolution of F
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Eg = | |w(d—-c*m)||? (1.11)

was minimized by variation of . The required non-Toeplitz matrix inversion was done using
Golub's method (Claerbout,'76). The weights, w, were chosen to be the smoothed envelope
of the same multiple model,m.. The philosophy behind the choice of weights was that thé
seafloor reflectivity is best estimated by concentrating the filter design on those areas of

the data where multiple energy is known to be high. The result is displayed in Figure 1.8.

This filter's overall performance was very similar to that of the unweighted filter. It's
relative performance varied widely across the section. In some spots, such as the left side
of the dataset, it worked too well - wiping out both primaries and multiples. In other areas it
did not appear to do anything. When one considers that this filter's cost is an order of mag-

nitude over the cost of predictive decon, the results were disappointing.

The final statistical model (equation 1.8}, and the model which proved to be the best,

was a two channel shaper filter. The prediction error,
Eg=||D-M,e—M,C,| |? (1.12)

was minimized by simultaneous variation of ¢, and Eg.

In equation (1.12) D is the observed seismic trace, M,=Dz%, or D delayed by the
estimated water column reverberation time at the shot location, and M, =Dz9. The solution of
the normal equations for this model (block diagram - Figure 1.8) requires the inversion of a
block Toeplitz matrix. Wiggins and Robinson (1965) and Robinson (1967) give an efficient
algorithm for this.

This model again ignores the term in Es r?g that results from a complete expansion of (2).
Thus it does not precisely account for second and higher order pegleg multiples. 1t is, how-

ever, consistent with our general philosophy of attacking the higher amplitude multiples.

Figure (1.10) is the result of applying the process depicted in Figure (1.9) to the same
COS example. The primary/multiple ratio is visibly better than the predictive decon result.
The split pegleg is well suppressed across the section and the primary around 3 seconds
stands out better than after predictive decon (Figure 1.7). This is chiefly because the total
number of filter parameters was cut in half. As a bonus, the additional symmetry of the block
Toeplitz matrix reduced the computation time significantly over the time of standard predic-

tive deconvolution.

The techniques just described require the user to obtain an estimate of 2% and 29. In
cases where the signal/noise ratio is fairly strong, such estimates can be obtained by
automatic picking. If the signal/noise ratio is weaker, however, an unacceptable amount of

man-machine interaction may be required to pick z* and 29 and the methods of the next
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FIG. (1.8). Residual after weighted least-square fit of Figure 1.5 to Figure 1.3.
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TWO CHANNEL DECONVOLUTION
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FIG. (1.9). Block diagram for two channel deconvolution of shot and geophone multiples.

chapter become more appropriate.
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