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Synthetic Seismograms in Viscoelastic Media:
l. Theory

Thierry Bourbie

Alfonso Gonzdlez-Serrano

This article is a continuation of a previous paper, (Effect of Reflection Coefficients on
Synthetic Seismograms, SEP-286, pp205-219), where we discussed the computation of syn-
thetic seismograms in an elastic medium, using an f-k domain wavefield extrapolation
method. In this paper we consider the case of waves propagating in a linear viscoelastic
medium. Our goal is to model a marine seismogram and to study both the effect of 7 to S

conversions and the effect of attenuation contrasts.

1. Plane waves in alinear viscoelastic medium,

For the marine seismology case, the hypothesis of representing the medium by a linear
viscoelastic model is completely justified. First, the phenomena we are studying are low
amplitude in the far field (1 or 2 wavelengths from the source). Under this condition linearity
of {he stress-strain relationship becomes a good approximation. Second, at the strain ampli-
tudes concerned by seismic exploration (<107%), attenuation phenomena are not friction
phenomena but fluid phenomena (Winkler ef al, 1979), which can be modeled by viscoelasti-
city theory.

In linear viscoelasticity the reciprocity principle is applicable (Borcherdt, 1977, Bourbie,
1981b). This: allows us to write the elastodynamic equation for linear viscoelastic media by
replacing, in‘ the usual elastodynamic equation, the real elastic moduli by complex

frequency-dependent ones. This gives

5 | VOt W) VBu = pii (1)

where K(w) is the frequency-dependent complex bulk modulus, u(w) is the frequency
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dependent shear modulus, ¥ = V-u is the volumetric dilation, and u = u(z,y,2,t) is the dis-

placement vector.

Taking for the displacement u time-dependence of the form gtvt equation (1) can be

rewritten

V8 + plw) VPu = —pou (1b)

K(w) + IME’SL)

In this equation u = u(z,y,2).

This equation can be transformed using the Helmholtz form for the displacement u as

function of potentials & and ¥

u = Vo + vx¥ (2)

then (1b) separates

(3)

where

K(w) + g—u(co)

- pwE
k§ w(w)

that are complex-valued quantities.

The general plane wave solution of equations of type (3) is
$ = (I)O ev’.(ut -Kr (4)

where K is a complex vector, and r is the position vector.

We can write K separating its real and imaginary parts:
K =P -iA (5

P will be called the propagating vector. A will be called the attenuating vector.

Rewriting equation (4) using these definitions we get

b = @0 e——A-I"ei(ut -Pn (6)
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In general, vectors P and A are not parallel, and the wave is said to be inhomogene-
ous. For the other case, where the angle between P and A is zero, v = (P,A) = 0O, the wave

is said to be homogeneous.
From (3), (4) and (5) we also get

2 2
KK = |P]2~|A|2 +2i]|A] |P] cosy = p}; = Ilj;lz [ Mp -1 M ] (7

with

M = M{w) complex modulus of the wave under consideration:

M=K+ g—,u, for a P wave

M=pn for an S wave
Mg Real part of i
My Imaginary part of #
| M| Modulus of M

In 2D (6) gives

® = @0 e—(Azz; + A, z) e'i. [wt —(Poz + P2) ]

so (7) can be written as

2
(P, —iA4.)% + (P, —iA,)? = % (8a)
or
2
K2+ k2 = % (8b)

2. Green's function and W avefield Extrapolators in linear viscoelastic medium

Since the reciprocity principle can be applied in the situation we are interested, we are

going to use it to derive the operators we need to extrapolate the wavefield.
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2a, Green's function for the acoustic wave equation

We have shown in SEP-26 that for a Dirac source located at the originh and on the sur-

face of an elastic liquid, the Green’s function for the downgoing wave is given in the f-k

domain by:
e-JUc,,z
GDW(]CZ,&),Z) = im k (Qa)
4
with
R 112
vk
Iczzz‘;—1—-[mz ] (9b)
The Fourier transform convention is
Flazt) = = [ [ [ Flhgkyw) e %= "% 5 g qie, de

(2m)3

In this expression the ratio vk, / @ is related to the angle of propagation of the wave

by

sing = vk, / (10)

The reciprocity principle gives us for a viscoelastic medium

e—k,z
Gpwlkz,0,2) = im (11a)
kz
with
" 2 112
w U
kz = :!—}—p’u 1 - 'G.)_] ] (11b)

p.v. meaning principal value of the square-root,

i.e. the square-root which has a positive real-part
v is a complex velocity given by v? = %J—, vp =0 (11c)

.- k is a complex number k =k, +ilm(k) = P, —iA, (11d)
[cf. (8a), (8b)].

Note: To simplify notations, the fact that we are taking the principal value of every

complex square-root will be understood in all following equations.
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In our synthetic seismogram, the incident wave will be homogeneous. In this case, using
(7), (11d) becomes

k = (JP| —i]|A])sin® = wVp/H sing (12)

when 9 is the angle defined in figure(1).

= X

FIG. 1.

From figure(1), we can find an equivalent to (10),
sind = P,/ |P]

For an homogeneous wave, and by using {7) we obtain

+vf k
sing = ML (13)
Vp w
withv =M /p,or
o |M| +MR 172
R = —2p
172
v, = | M| — Mg
7 ——“‘—2,0
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2b, Wave field extrapolator for the acoustic wave equation

It is well known that in an elastic medium the wavefield extrapolator for the acoustic

wave equation in the f-k domain is
(enky,z) = g Wa?

This relation can be written for a viscoelastic medium, as done in paragraph 2.a, and so we

have
ew,kz,z2) = i
with
w v g 12

k, = o 1 - o ]

v = NM/p

k =k, +ilmk = s—simﬁ,or

sing = M ki , for an homogeneous wave.

Vg w

Remark: Boundary conditions will imply, as is shown in the next paragraph, a conserva-
tion of the z-coordinate of the wave vector K. This will make us able to use equations
obtained in the first medium for other media. In particular, in the case of an homogeneous

incident wave, we will apply equations (12) and (13) everywhere.

3. Reflections and Transmissions

in all the following equations, time dependence has been omitted, and it is understood
to be of the form ei%t,

Figure(2) shows the two media we are dealing with, and the notation employed. Only
the propagation vector has been represented. All variables associated with the lower
medium will be primed. In the first medium, subscript 1 refers to the amplitude of the incident

wave, while subscript 2 refers to the reflected wave.

In all the following derivations, we are going to use potentials. As function of poten-

tials, we have the following system of equations.
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FIG. 2. P wave incident
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S wave incident

Aje Ttk tdz) g g —ilke —da)
Ble—i(kz +fz) 4 Eze~i(kx - f=z)
- Arg—'i(k':t +d'z)

= PHe —i{k'z + f'z)

_pe?

s Reld) =0
2

L;’— Re(f) = O
’..2

plw ,

N ¥ om Re(d') = 0
2

% Re(f') = 0

The displacements and stresses for the 2 case are given by:

Displacements:

'LLZZ

0% _
ox

o

oz
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_ 08, ov
Y2 T % T Bz
Stresses:
_ , 0% 8 0% ¥
Ozz = )\axz + (A +2u) 927 +2 Fyr.

_ %% Ry R
Oz = K 0xdz  pz? * ox?

Three cases are to be examined separately.

3a. Liquid-solid interface,
The incident wave is traveling in a liquid medium, this implies x = 0, B, = B, = 0. Con-
tinuity of displacements and stresses gives

’

U, = U ,

0 = 0 2z
—_— ’

Ozz - 0 2z

This implies & = k', which can be considered as a generalized Snell’s law.

Az _ o o pd[(f? — k3P + AkPdf] — pd (f'? + kR)?
4 pra[(f'® —k®)PR + AkPd'f'] + pd (f'? + k?)?
A - pp = 2pd(f'* —k*)

A d p'd[(f'2 —k®)? + 4k2d'f'] + pd'(f’2 + kR)?
H Apddk(['? + k?)

A 5T pdl(FR kPR + Ak ] + pd (f 2 + kD)2

3b, Solid-Liquid interface,
The incident wave is now traveling in a solid medium, and the transmitted wave is trav-

eling in a liquid medium, therefore we have i* = 0, B° = 0. The continuity equations are now

’

U, = u ,
Oz = O
Ozz = T 2z

This implies k = k', as in case 3a. Now two incident waves are possible:

SEP-28



Bourbie Gonzdlez 255 Seismograms in viscoelastic media

1. P-wave incident: B; = 0, we get

Az _ Ron = p°d(f? + k% + 4kPdd fp — pd (f? — k?)?
A, PP prd(fR + kPR + AkRdd fp + pd (f 2 — kP)?
Ba _ po - 4kpdd (F? — k)

A, PS T pd(fR + k22 + AkPdd'fp + pd (F? — k?)?
A o - 2pd(f* — k*)

A, FET p'd(f2 + k)2 + akRdd f p + pd (F 2 — k?)?

2. S-wave incident: A; = 0, then we get

Be _ o o AKPdd[p - pd(f? ~k®)? — p'd(f? + k?)?
By 7% T pd(r® 4 kD + pd (F2 - kD)2 + AK2dd [ p
Ao _ Lo —4kd f p(f? — k®)

By ~ P T pd(FE+ kDR + pd (FE - kDF + AkPdd [ p
A_' -7 _ 4chfp(f2 + kz)

By T pd(F+ kD% 4 pd (f7 - kPF + 4kPdd [ p

3c. Solid-Solid interface,

Two cases are possible: we can have either a P or an § incident wave. In both cases

the equations of continuity are

Uz = Uy
Uz = u’y
Oz = Oz
Ozz = 0z

b1: P-wave incident: B; = 0, if we define

Epp = A/ A
RPS = Bz/ Al
Tepp = A/A4
Tps = B/A

They are solutions of the linear system

I
=2

Ap

where
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k f —k I
—~d k —d' —k
—2kdp  (fE-k®Du 2kdw (R -k
(F2—k®u  —2kfpu  —w(f? -k 2kf'w

gpp —k

_ | Eps _ —d

P = T b =1 _oa
17 2 M 2
Tps —u(f* — k®)

Esp = A/ B,
RSS = Bz/ Bl
Tsp = A/B,
TSS = B / Bl
are solutions of the linear system
As = ¢
where
Esp
s = |fiss c = -'—flc
Tsp (2 —k?)
Tss —2kf 1

4. Attenuation model

In an internal report of the Stanford Fock Physics Project, (Bourbie, 1981a,c), it
has been shown that the effect of attenuation on reflections was not, to a first order
approximation, a function of the viscoelastic model chosen. In the same report it was also
shown (following equations derived by Borcherdt, 1977) that the attenuation function in two
dimensions was a slowly varying function of the angle ¥ between the attenuation and the
propagation vectors. Under these conditions, we are confident on using a constant —@
model (Kjartansson, 1980) to represent viscoelastic behavior. This model will enabie us to

have the right order of variations modeled in the synthetic sesimograms.

For review purposes, the constant-Q model is characterized by a frequency free

representation of the quality factor @, the model is the following:
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The viscoelastic modulus is given by

i Ry 2y i
M(w) = M, [ i] = My | 2| eimsgno
Wo o
implying a phase velocity of
y
- W
Cw(w) = Co E

In all these, wy is a reference frequency at which My and Cy have been measured. y is

given by

1

S |
¥ = ﬂtan 1/ ¢)

5. Synthetic Seismogram

Our goal in this paper is to model a marine seismogram. For this purpose, we will assume
a flat-layered earth model. Our experiment will be to put a source at the sea surface, as in
our SEP-26 article. To simplify the mathematical writing, we shall use a 3 layered earth.

The generalization for more layers follows immediately.
The notations and the experimental setting are described in figure(3).

Five primary waves are recorded at the sea-surface. They are the following, where the
letters refer to the type of wave in each path: PP, PPPP, PPSP, PSPP, PSSP.

To find the expression for each of these waves in the f-k domain, we are going to con-
sider them as potentials. It is much easier to do so because potentials satisfy the acoustic
wave equation, for which wave extrapolators are well known. On the other hand, if we were
dealing with displacements, propagation would have to be done with the elastodynamic wave
equation, for which we do not have wave extrapolators in the f-k domain. Thus we have:

PP:

exp[—i(Zkzpozo)]

7:7TE : S(kzsw)
kzPo

PPPP:

exp[ —i(2k,p zo + 2k.p, 2,)]

iﬂTlezppTlopp ’ S(k,,w)

kzPo
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PSSP:
. exp[—i(2k.p 2o + 2k,s5,2,)]
inTsKizss Thosp - - S(ky,w)
Zo
PPSP:
. exp[—’i(Zkz_pon + ]Cz_plzl + Iczslz 1)]
inTpRieps Thosp - - Skg,w)
Ll
PSPP:
exp[—i(2k,p 2o + k,p. 2, + k,5.2,)]
inlsRizsp Tiopp =0 L =1 + S (kg,w)

kzPo

In these expressions

S(k,,w) = 2D Fourier Transform of the source function

( g 112

_ w 1 (XOIC
T A
2

. B o 1 ( O(lk 12
SOR) i R

\

( R 112
k = B 14 _Blk
25, - ﬁl )

2 2

os5p + o k

with k = “—sing , and sing = —2f — 0L Tz
ao (XOR [#)

For primary waves, the synthetic seismogram in the f-k domain is the sum of the five

upper expressions.

If we want to introduce multiple reflections or pegleg multiples, it is straightforward.
Some examples are given in figure(4). The procedure can easily be generalized. The syn-

thetic seismogram itself is obtained by taking an inverse 2D Fourier Transform of the
expressions chosen in the f-k domain.
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Water

—-Rik, z
FIG. 4a. Water-Bottom multiple. Multiply the expression for PP by the factor: — Re *Fo”0

Water

FIG. 4b. Peg-zl?kg multiple. Multiply the expressions for PP PPSPP PSPP PSSP by the
TRWeP,Z0
factor: — Re 0
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Water

FIG. 4c. Intrabed multiples. If we take PPPFP as the main wave, we can have as intrabed
multiples:

path computation

PP(PP)YPP PPPP-R,2ppRi0pp €
PP(SP)PP  PPPP-RiapsRigsp &
PP(PS)YPP PPPP-R,sspRiops €
PP(SS)PP PPPP-RipssF10ss €

—":(ZkzPl)zl
~'i.(2k:zP1 + kzsl) z,
~i(Bkap, +hys ) 7y

~i(2k,s,) 7y
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