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Q and Kalman Filtering

Dave Hale

Abstract

An important first step in applying the Kalman filter to seismic data is the interpretation
of the so called '"state equations' on which the filter is based. We propose two new
interpretations, both of which include the time-varying effects of attenuation and spherical
divergence. We derive the first interpretation from a time-varying, moving-average (MA)

model of the seismogram, the second from a time-varying, auto-regressive, moving-average
(ARMA) model.

The primary difference between the MA and the ARMA approaches is the way in which
estimates of reflectivity are computed. With the MA model, fixed-lag smoothed, linear,
minimum-error-variance estimates are obtained directly from the most basic Kalman filter
algorithm. With the ARMA model, such estimates require costly extensions to the basic algo-
rithm, implying that the ARMA approach may be preferred only when the MA model canhnot
parsimbniously represent a seismogram. We illustrate both the MA and ARMA interpretations

by Kalman filtering synthetic seismograms.
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Introduction

Kalman filtering theory provides a means of estimating, in an "optimum" way, random
inputs to a known, time-varying, linear system, given noise-contaminated outputs of that
system. To apply this theory to seismic data, we may think of the random inputs as reflec-
tion coefficients of a layered earth and the outputs as samples of a recorded seismogram.
Several papers, including those by Bayless and Brigham (1970), Ott and Meder (1972),
Crump (1974), and Mendel and Kormylo (1978), have demonstrated this approach. In all of
these papers, the authors assume, as did Kalman (1960), that parameters describing the
system are available. For seismic data, these parameters include the source waveform, @,
velocities, etc. The usefulness of Kalman filtering depends on our ability to estimate the

system parameters.

We too assume that estimates of the required parameters are available and then
address the problem of how to use these estimates in the model represented by the follow-

ing equations:
xt = tht—l + YTt (1 a)
z, = hix, +n, (1b)

These are the so called 'state equations’, central to Kalman filtering; equation (1a) defines
the "message model” and equation (1b) defines the "observation model."! 7, represents a
scalar, zero-mean, white, input process; n, represents a scalar, zero-mean, white, additive
noise process; and z; represents the recorded data as a discrete function of time f£. X, is
called the "state vector". If x; is an mx1 column vector (m being the "order'" of the state

equations), then 7, and h, are m X1 column vectors, and &, is an m xm matrix.

If we let 7, represent the reflectivity series, then the three matrices ,;, ®;, and h;
st;nd between the reflectivity and the noise-contaminated seismogram z;. These matrices
must depend on the seismic system parameters; but one has considerable freedom in speci-
fying which parameters go where, as is evident from the different approaches taken in the
four above mentioned papers. Interpretation of the state vector x; is also an important step
in the application of Kalman filtering to seismic data; and here, too, interpretations differ

widely in published geophysical applications.

Perhaps adding to the confusion over which is most suitable, we develop two new
interpretations of equations (1) for seismic data, both of which include the time-varying

effects of attenuation and spherical divergence. Although non-stationarity provides one of

Actually, equations (1) are a particular form of more general state equations which may include vector (multichannel)
processes as well as colored nolse. See, for example, Sage and Melsa (1979).
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our strongest motives for Kalman filtering, attenuation effects have been ignored in previ-

ously published applications.

A seismogram model

We begin by specifying a model for a seismic trace, one which includes the effects of
attenuation and spherical divergence but which is easier (perhaps only for geophysicists) to

understand than the model of equations (1). In matrix form, our model is
z = FQDr + n (2)

where
z is a column vector composed of the samples 2; of a seismic trace,

F is a lower-triangular, Toeplitz matrix with samples of the source waveform J: on
its diagonals. The first columnof Fisf=[fo f, f2 --- f, 00 --- 0]

Q is a lower-triangular matrix described by Hale (1981) which transforms the impulse
response for a non-attenuating medium to that for an attenuating medium. The
elements of this matrix depend only on §, the quality factor of the medium

(assumed constant).

D is a diagonal matrix which transforms the impulsive, vertically propagating plane-
wave response for a layered medium to the point source response for such a
medium. In other words, multiplying by D applies spherical divergence. For a con-
stant velocity medium, the diagonal, non-zero elements of D, D,;, are proportional
tol1/¢.

r is a column vector containing the sampled response 7; of a layered, non-
attenuating medium to a vertically propagating, impulsive plane-wave. r should

include all multiple reflections and transmission losses.
n is a column vector containing samples n, of additive noise.

Figure 1 illustrates the creation of a synthetic trace based on equation (2). cis a
column vector (here plotted on its side) 500 samples long which represents a reflection
coefficient sequence; the coefficients were derived from a Gaussian distribution of variance
0.06 with a 10% probability of having a non-zero value at any given sample. r was com-
puted from ¢ via the algorithm given by Claerbout (1976,p.160). Dr is the result of applying
spherical divergence; QDr is the result of applying attenuation for @ = 100. fis the source
waveform with Z-transform F(Z) = (1 — 0.923)(1 — 0.92%), possibly representing the com-

bined effects of source and receiver ghost reflections in marine data. The signal s is then
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FIG. 1. Creation of a synthetic trace via the model of equation (2). Each trace is scaled
independently for plotting; the maximum amplitude is given to the right of each trace. ¢ is
the reflection coefficient sequence; r includes all multiples and transmission losses; Dr
includes spherical divergence; QDr includes attenuation for @ = 100; f is the source
waveform; s:is the signal including all of the above; n is the noise; z is the synthetic trace;
and Cz is z corrected for spherical divergence. The sampling interval is 2 msec.
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obtained by convolving f with the earth’s impulse response or, equivalently, s = FQDr. nis a
Gaussian random noise sequence of variance 5.0x107¢, The synthetic trace z is the sum of
the signal s and the noise n. For display only, we correct for spherical divergence (i.e., multi-

ply z; by ) to obtain the trace labeled Cz.

Because the transformation from ¢ to r is linear, it could be included as an additional
matrix multiplication in equation (2). However, the elements of the added matrix, unlike
those of F, Q, and D, cannot be estimated prior to estimating elements of ¢. We, therefore,

choose to estimate rinstead of ¢, though ¢ is certainly the more desirable vector.

Linear, minimum-error-variance estimation

Define a linear estimate of r by ¥ = Gz or, equivalently,

e = ) G2 (3)
s

The linear, minimum-error-variance estimate of r is that obtained by minimizing £[(7, — 7,)?]
with respect to G where F denotes ensemble, not time, averaging. Booton (1952) showed
that the following condition is necessary and sufficient for ¥ to be the linear, minimum-error-

variance estimate of r:

E(riz,) = ) GsFE(252,) (4)

If we assume that both 7, and n; are white, uncorrelated, stationary random processes, with
variances ¢f and o, respectively, then equations (2), (3), and (4) can be combined to show

that r must satisfy
[ + a(FQD) Y(FGD)TJr = (FQD) 'z (5)
where o = aﬁ/ af. An alternative form, particularly useful if FQD is singular, is

[ad + (FQD)T(FGD)]r = (FQD)’z

Verify that Equation (5) yields the expected results in the limits of very small and very
large . As a -» 0 (no noise), ¥ - r; and as o - big, r becomes a scaled, matched filtered

version of z. [Multiplication of z by (FQD)7 is equivalent to matched filtering of z,.]

If the source waveform f, is minimum-phase, then (FQD)™! will be lower-triangular. In
general, for any non-zero , the matrix on the left-hand side of equation (5) will contain
both upper and lower-triangular non-zero elements. Hence, the estimate ¥ cannot be found

by back-substitution (i.e., 7; cannot be found by feedback-filtering). This matrix is,
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however, symmetric and positive-definite; and these properties can be exploited in the com-
putation of T. We can also assume that the matrix is effectively banded, that non-zero ele-
ments far from the main diagonal are small enough to be neglected. Bandedness may make
numerical solution of equation (5) quite feasible for seismic data, particularly if the same
filter is to be applied to many consecutive traces (likely since we have assumed FQD is a

known matrix).

Numerical solution of equation (56), however, is not Kalman filtering. The reader should
find the intuitive handles offered by equation (5) useful in interpreting the equations and
results of Kalman filtering, for, like the solution of equation (5), Kalman filtering provides a

linear, minimum-error-variance estimate of r.

KM A -- Kalman filtering for a M A model

The Kalman filter is summarized by the following five equations (after Mendel and Kor-
mylo, 1978):

Prediction:

Rejgo1 = B4%X 10 (6a)
Popioy = 8Py 18] + y0kyf (6b)
Correction:

ki = Pyje_ih[n/Py ¢ by + 0F]71 (6¢c)
Xepp = Reje—1 + k(2 —hf%;)4)) (6d)
Pee = U =KkhDP, ) (6e)

X, |t-1 denotes the linear, minimum-error-variance (LMEV) estimate of the state vector x,
given the past recorded data z; ;, z; o, 2;_3, ' " ; §t|t denotes the LMEV estimate of x
given the present and past data 2z;,,z;, ;,2, 5 ---. If we define the error
Xeje-1 = X — Xgj-y, then Py, denotes the (m xm matrix) covariance of X;;_,, often
referred to as the "prior error covariance". Similarly, Pt“ represents the 'posterior error
covariance".’ k; is usually called the "Kalman gain" vector. 7, ®;, and h, are the, as yet,

undefined matrices of equations (1).

Kalman filtering is just the sequential estimation of x; using equations (6) for

t =1,2,8, - . Therequired inputs are Xy o, Py o, 07, 0¥, and z;.
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Before we can use equations (6), we must define x;, 7;, ®;, and h; in equations (1),
and these definitions should be consistent with our seismogram model of equation (2).
Because r; is the quantity we wish to estimate and because equations (6) yield estimates
of x;, we are motivated to make equation (1a) as simple as possible. For m = 4, our pro-

posed form is

e 0 0 0 OfFt1| |1
Tt -1 100 O|j&-2 0
v o] = [0 1 0 Ollz, o] T lo|™ (")
Z, g 0 61 Oflz,_, 0]
The state vector x; is simply
T
X = {"t Ti-1 Tt Ti-3

The form of equation (7) for arbitrary m should be evident. $, and 7y, are constant, sparse
matrices which contain none of the seismic system parameters. For equations (1) to be con-
sistent with our seismogram model, h; must do the work of FQD of equation {(2). To deter-

mine h,, first rewrite equation (2) as
Tu
2 = ZFtsZqu u_ + oy
& w

where we have assumed a constant velocity medium to replace the spherical divergence
matrix D. Using the definition of F from the discussion of equation (2) and the definition of Q
in Hale (1981), we have

T,
z; = th—s ZqSu—u ‘,5— +
8 (73

The superscript w on the Q-filter g reflects the fact that g is a time-variable filter. After

manipulation of summation indices, we obtain
i k T
- t—5 t—s—u
2z = Z Zfs‘Iusu + n,
s=0 u=0

where we choose I and k& so that f, and gl are effectively zero for s > and u > k,
respectively. A change of index from s to s —u results in
Ltk

Zy =
s=0

ko1
o l—s

t_
Gu st—u] Ti—s + M,
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If we define the quantity in parentheses to be the coefficients k! of a time-variable filter,
then h; of equation (1b) must be

T
h, = |ht At BE - - RS

™ —1

where m =1 +k +1 is the order of the state equations.

Having defined the variables in the state equations (1), we can now apply the Kalman
filtering equations (6) to estimate r; given z,. But recall that equations (6) yield estimates
of the state vector x; based only on z;, 2;_;, 2; 5, ' - - . Each estimate X, |¢ contains the
m. estimates 7y 4, T;_1|¢, Te—2j¢, * * *» Tt-m+1)¢- Thus, our proposed interpretation of equa-
tions (1) provides m distinct estimates of any ;. Intuition, perhaps based on equation (5),
and the work of Mendel and Kormylo (1878) suggest that the best of the m estimates is
F”Hm_l, an estimate based on future as well as past observations z;. F”H, is called a

"fixed-lag smoothed" estimate of 7;; and, for the examples that follow, we chose T = m —1.

Figure 2 contains the results of Kalman filtering both the pure signal s and the noise-
contaminated trace z of Figure 1. The correct answer r is replotted for comparison. Cs and
Cz are the divergence-corrected (for display only) s and z, respectively. The traces labeled
r1 and r2 are estimates of r based on s. r1 was obtained with ¢ set to zero (the correct
value) in equations (6); r2 was obtained with g2 = 1.0x107°. Recall that, aside from provid-
ing the source waveform, @, etc., we must also provide ¢?, o7, Pg|os and Xgq,q to the Kalman
filtering algorithm. In all of our examples, we used the initial conditions Py = o1 and
X510 = 0. r1 is the result of providing the correct ¢? and of in filtering s; because s is

noise-free, r1 is a good estimate of r. The source of the error at early times is unknown.

~r2, on the other hand, is the result of "telling” the algorithm that the input s is noisy
when it is not. Notice that the filter progressively refuses to back out the effects of FQD

at the later times so as not to amplify (non-existent) noise.

The danger of underestimating the noise variance ¢? is illustrated by the estimate r3,
obtained by Kalman filtering the noisy trace z with o set to zero in equations (6). In prac-

tice, we would never be so confident in our data (or our model) as to assume g2 = O.

Like r3, r4 was obtained by filtering z, but with ¢ = 1.0x107? in equations (6). Note
that, at early times, r4 closely resembles the correct r; at later times, r4 is less noisy than
the input z, as seen by comparing r4 with Cz. This increase in 'signal-to-noise ratio" is
expected because the fixed-lag smoothed estimate obtained by Kalman filtering is roughly
equivalent to the matched-filter estimate {for large o) of equation (5). Remember that both
Kalman filtering and equation (5) represent solutions to the same problem -- linear, minimum-

error-variance estimation of r. The basic difference between the two methods is that
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FIG. 2. KMA -- Kalman filtering for a MA model. ris the "correct answer" replotted from Fig-
ure 1 for comparison. Cs and Cz are the noise-free and noise-contaminated traces, respec-
tively, of Figure 1, divergence-corrected for display only. r1 is the fixed-lag smoothed esti-
mate of r obtained by Kalman filtering s with the correct parameters. In particular, a,zl =0 in
equations (6). r2 was also obtained from the noise-free s, except that a Kalman filter with
noise variance a,? = 1.0x107% was used. The estimates r3 and r4 were computed using Kal-
man filters identical to those used to compute r1 and r2, respectively, the differences being
that the noisy z was input rather than the noise-free s.
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equation (5) implies that all past and future 2; are used to estimate the present 7y, Whereas

our Kalman filter estimate is derived from all past but only m —1 future z;.

The results in Figure 2 indicate that our interpretation of equations (1) enables reason-
able estimates of r; when we provide the Kalman filter with the correct parameters. One
disadvantage of this interpretation, however, is that the order m of the state equations
may become quite large if, for example, the source waveform is long or @} is small. m = 35 in
the above examples. Larger m imply greater computation time; for example, the cost of

2

computing P”t in equation (6e) is proportional to m?. Clearly, we want to keep m as small

as possible.

Mendel and Kormylo (1978) obtained small m. by interpreting the state equations (1) in
a manner quite different from ours. In their interpretation, the source waveform f; was
specified analytically to obtain "a continuous-time state space model” which was subse-
quently discretized to obtain equations (1). Analytical functions for a real source waveform

may be difficult to obtain.

A more practical way to decrease m may be to permit poles as well as zeros in our
discrete specification of the source waveform. As written, equation (2) implies that z; is
the output of a time-varying, moving-average process. In the next section, we develop a
new interpretation of equations (1) by including auto-regressive (AR) as well as moving-

average (MA) components in our model.

KARM A -- Kalman filtering for an ARM A model

First rewrite equation (2) as
z = BA'!QDr +n

We simply replace F with BA™!; B is a lower-triangular, Toeplitz matrix with MA coefficients
on its diagonals. The first column of B is b=[bgb, by -+ by, 00 --- 0]7. A is also
lower-triangular and Toeplitz but with AR coefficients on its diagonals. The first column of A
is a=[1aaf -+ af00 - - 0]”. (The meaning of the superscript will become

apparent.) With these definitions, we rewrite our model as
z = By +n
where y is defined by
QlAy = Dr

Using the definition of the inverse Q-filter in Hale (1981),
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T
2Pios Noduyu = 4
s U

Manipulate summation indices to obtain

Ms

k
2,
s=0

T
psgazfyt —s-u - tL (8)
0

u

where k is chosen so that pf ~ 0 for s > k. Next, define a normalized inverse Q-filter with
coefficients g! = p!/ p}, change summation index » to u —s, and interchange summations to

obtain

k+ia | & i 0 Ty
2 zgsau—s Yiu = t

w=0 =0 tPO

In parentheses are the coefficients of a time-variable filter which we define to be a,f,

Because of our normalization, af) = 1; the above equation can, therefore, be rewritten as

Tt

kiia ¢
Wi = — ), @Yt t
“w=1 “ tpf)

Recall that the purpose of this lengthy derivation is to provide a new interpretation of the

state equations (1) as follows (for m. = 4):

X, = {yt Yi-1 Y2 Yi-3 ! (9a)
Yt —al —ab -af —af|¥ea 1/ (tph)
t—1 1 0 0] 0 |[Yt-= 0
vel 10 1 o0 o|yalt] o [T (9b)
t -3 Y 0 1 O Jlyi-s Y
h, = [boblbzbsr (9¢)

Definition of the quantities in equations (1) is now complete. In practice, m must be chosen
to be the greater of Ib +1 and k +la. If k is much greater that either la or b, then we may
wish to decompose the matrix Q into AR and MA components, just as we decomposed the

matrix F.

An unfortunate consequence of introducing AR as well as MA components in our seismo-
gram model is that equations (6) no longer yield direct estimates of r,. They instead provide
estimates of the state vector x, or, equivalently, y; [equation (9a)]. Ott and Meder (1972)

proposed the following "prediction error'" estimate of 7

YeTe = Xepe — B Xy = kelz ~hi%X;i-1) (10)
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an estimate suggested by equations (1a), (6a), and (6b). Because, in our interpretation, 7,
has only one non-zero element, equation (10) provides a unique estimate of r;. Mendel and
Kormylo (1978) point out that this estimate is "ad hoc", that it is not a LMEV estimate, and
then develop methods for computing LMEV, smoothed (fixed-lag, fixed-point, and fixed-
interval) estimates of r;, essentially extensions of the basic Kalman filter equations (6).
[See also Mendel and Kormylo (1977).]

We propose yet another estimate of r;. Recalling that the Kalman filter equations (6)

provide fixed-lag smoothed estimates ; |¢+7 Of y;, equation (8) motivates

a
Tt = ti ipsta't?yt—s—u]t—s~u+-r 1)

s=0u=0
However, the ?t so obtained are not fixed-lag smoothed estimates; i.e.,

'Ft = tP6§t|t+r+t(P5fl? +pt1)§t—llt—l+'r+

# tpé’gtl”-r‘*' t(pha? +Pt1)§t—1|t+r+ e = $t|t+'r

The estimate 7; in equation (11) (unlike Ott and Meder’s estimate) is derived from future as
well as past z;, but because every term in equation (11) is not based on z;,,, 7y # 7¢ 44r
Nevertheless, we expect equation (11) to provide reasonable estimates, particularly since
p* and a® are minimum-phase so that the dominant terms in the sum are those for small s and
u. Estimates based on equation (11) were computed from the synthetic s and z and are
plotted in Figure 3 in the same format as those plotted in Figure 2. For our synthetic traces,
the source waveform is best represented by an all-zero (MA) form; therefore, the AR com-

ponent of our model consisted only of the inverse Q-filter. Again, we chose m = 35.

r1 and r4 were obtained, as in Figure 2, by providing the Kaiman filter with reasonable
noise variances. r2 and r3 again illustrate the result of supplying incorrect noise variances
to the Kalman filter equations (6). Comparison of corresponding estimates in Figures 2 and 3
confirms our expectation that little practical advantage is to be gained in using a truly

fixed-lag smoothed estimate rather than the "'quick and dirty'" estimate of equation (11).

Condlusions ,

In the words of Crump (1974), "the real potential of the [Kalman filtering] method lies in
its capability for handling continually time-varying wvalues for all parameters which are
required. The accurate estimation of these time-varying parameters is the major problem in
taking full advantage of the potential of the method. Further investigation of this problem is

needed.”
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FiG. 3. KARMA -- Kalman filtering for an ARMA model. r is the ""correct answer' replotted
from Figure 1 for comparison. Cs and Cz are the noise-free and noise-contaminated traces,
respectively, of Figure 1, divergence-corrected for display only. r1 is the estimate [via
equation (11)] of r obtained by Kalman filtering s using the correct parameters. In particu-
lar, oﬁ = 0 in equations (6). r2 was also obtained from the noise-free s, except that a Kal-
man filter with noise variance 0% = 1.0x10 7% was used. The estimates r3 and r4 were com-
puted using Kalman filters identical to those used to compute r1 and r2, respectively, the
differences being that the noisy z was input rather than the noise-free s.
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But, assuming that this major problem can be solved, we must still decide how to best
use the estimated parameters in the context of Kalman filtering; we must interpret the state
equations (1). Of the two interpretations presented in this paper, both of which include the
time-varying effects of attenuation and spherical-divergence, the first (KMA) is perhaps
most appealing due to its smoothed estimate of r,. With KMA, a fixed-lag smoothed esti-
mate of r; is available for the same computational cost and algorithmic complexity as for an
unsmoothed estimate. This statement cannot be made about the method of Mendel and Kor-
mylo (1978).

An alternative to KMA, motivated by a desire to decrease the order m (and, hence, the
computational cost) of the Kalman filter, is to interpret equations (1) with AR as well as MA
components (KARMA). Results for synthetic data indicate that KARMA provides estimates
comparable to those obtained with KMA, even though the estimates are not strictly fixed-lag
smoothed. Highly resolved estimates of r; are obtained when the noise level is low, matched

filtering is performed when the noise level is high.

Finally, we should not too quickly disregard the direct, numerical solution of equation
(5). The symmetric, positive-definite, and, in particular, the banded structure of this system
of equations may make its direct solution less costly than any practical Kalman filtering solu-

tion.
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