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Q and Adaptive Prediction Error Filters

Dave Hale

Abstract

We first specify an auto-regressive model for a seismic trace which includes the
effects of attenuation and spherical divergence. From this model, we determine how an
adaptive prediction error filter (APEF) should change with time as it ""deconvolves' our model,

non-stationary seilsmogram.

Most APEF algorithms developed to cope with non-stationarity are not based on a model
of the physical processes which cause the non-stationarity. We applied two such algo-
rithms to our model seismogram, attempting not only to deconvolve the data, but also to esti-
mate § from changes in the APEF with time. Both algorithms yielded reasonable deconvolved
traces along with rough estimates of §, although one algorithm performed significantly
better than the other.

We also derive an APEF algorithm based on (in fact, constrained by) our model of
attendation. When applied to the model seismogram, this algorithm produced a better decon-
volved-trace and a more accurate estimate of § than either of the two unconstrained algo-
rithms; it is, however, limited by its inability to adapt to the time-varying signal-to-noise ratio

present in our model (and in real seismic data as well).
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Introduction

Adaptive, time-varying deconvolution filters provide a means of deconvolving non-
stationary seismograms. A variety of adaptive algorithms are available, and the choice of a
particular algorithm is typically based on our knowledge of the physical processes which
produced the seismogram. For example, if parameters describing the source waveform,
attenuation, spherical divergence, and noise are known, then Kalman filtering, a time-varying
algorithm which can use these known parameters, may be appropriate. (See "Q and Kalman
filtering” elsewhere in this report.) If, on the other hand, such parameters are unknown, then
(armed with assumptions of an auto-regressive model and a white reflectivity series) we

might choose adaptive prediction error filtering (APEF).

In this paper, we assume that APEF is our chosen method and that attenuation effects
at least partially account for the non-stationarity which motivates our use of APEF. We then

explore the following possibilities:

(1) We use an APEF which has no a priori knowledge of how it should adapt; informa-
tion is then contained in how the filter does adapt. Specifically, we may estimate
€, the quality factor of the subsurface which we believe parameterizes attenua-

tion, from changes in the PEF coefficients with time.

(2) We use an APEF which is constrained to adapt only to compensate for attenuation
effects. We again obtain an estimate of §.
With respect to the problems of producing a "good" deconvolved trace and estimating

@, each method has its advantages as well as its disadvantages; and these are dis-

cussed below.

An-AR model with Q and divergence
We first require a model connecting a seismic trace with a reflectivity series. Our
model, although time-variable, is linear and can be stated in the matrix form
z = AlQDr + n 1
where

. t N .
z is a column vector composed of the samples z; of a seismic trace,

A is a lower-triangular, Toeplitz matrix with auto-regressive (AR) coefficients on the

diagonals. The first columnof Ais[1a? af - 00 - . 0]
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Q is a lower-triangular matrix described by Hale (1981) which transforms the impulse
response for a non-attenuating medium to that for an attenuating medium. The ele-
ments of this matrix depend only on @, the quality factor of the medium (assumed

constant).

D is a diagonal matrix which transforms the impulsive, vertically propagating plane-
wave response for a layered medium to the point source response for such a
medium. In other words, multiplying by D applies spherical divergence. For a
medium of constant velocity, the diagonal, non-zero elements of D, D;;, are propor-
tional to 1/¢.

r is a column vector containing the sampled response r; of a layered, non-
attenuating medium to a vertically propagating, impulsive plane-wave. r should

include all multiple reflections and transmission losses.
n is a column vector containing samples n; of additive noise.

QDr is the impulse response of an attenuating, layered earth. If we knew this impulse
response, we could find the response to any time-invariant source waveform through convo-
lution. The source waveform is here approximated by an AR(l) form; i.e., the sampled

waveform has the 7 transform

ANZ) =

1
1+alZ+afZ%+ - +a°Z
If the source waveform has moving average (MA) as well as AR components, then we assume
I can be chosen large enough for A71(Z) to sufficiently approximate the Z-transform of the

source waveform. Multiplication by the matrix A~! then represents convolution with the

waveform.

Figure 1 illustrates the creation of a synthetic trace based on equation (1). cis a
column vector (here plotted on its side) 500 samples long which represents a reflection
coefficient sequence; the coefficients were derived from a Gaussian distribution of variance
0.056 with a 10% probability of having a non-zero value at any given sample. r was com-
puted from c via the algorithm given by Claerbout (1976, p.160). Dr is the result of applying
spherical divergence (i.e., dividing by £); QDr is the result of applying attenuation for
@ = 100. The filter a® can be thought of as the inverse of a synthetic source waveform;
the "signal" s is then obtained by convolving this source waveform with the earth’s impulse
response or, equivalently, s = A~'QDr. n is a Gaussian random noise sequence of variance
2.0x1075, The synthetic seismic trace z is the sum of the signal s and the noise n. Correct-

ing z for spherical divergence (i.e., multiplying by ¢) yields the trace y.
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FIG. 1. Creation of a synthetic trace via the model of equation (1). Each trace is scaled
independently for plotting; the maximum amplitude is given to the right of each trace. cis
the reflection coefficient sequence; r includes all muitiples and transmission losses; Dr
includes spherical divergence; QDr includes attenuation for @ = 100; «® is the auto-
regressive coefficient sequence; s is the signal including all of the above; nis the noise; z is
the synthetic trace; and y is z corrected for spherical divergence. The sampling interval is
2 msec.
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Now assume that n = O and define two new matrices: C=D"!and P = Q"!. Then
CPAz = r (2)

In SEP-26 (Hale,1981) we noted that the inverse Q-filter P is a lower-triangular matrix with
elements P; = pf_;, where p! " p!~! ¥ (1+¢,—¢) and p°® = §; i.e,, p' is approximately the
tth convolutional power of the two-term filter (1+g,—¢). This two-term filter is the (least-
squares) best, two-term inverse to an initially impulsive waveform that has been traveling in
an attenuating medium (of quality factor §) for a traveltime of one sampling interval. A
numerical study has shown that ¢ ® 0.64/ @ for a wide range (at least 25 to 400) of rea-

sonable §.

We assume (for simplicity) a constant velocity medium, for which the diagonal matrix €

has elements C,; proportional to f. Equation (2) can then be rewritten as
i ¢ i 0 i t%h o
t Dy O 24 g5 — Dy Z Qs tzt —u-s — Tt (3)
=0 s=0 =0 s=0

Because ¢ is typically a very small number, pt effectively lengthens only gradually with
increasing f; we choose k large enough so that p; & O for « = k and for all ¢ of interest.
Next define a trace y; obtained by applying a spherical divergence correction to 2z,

Yy; = l2;; and rewrite equation (3) as

i o Zl} O Yt —u—s M f} i Zl} ol }f_s—yw-s = m (4)
u=0 s=0 =0 s=0
The approximation, most valid for large ¢, is further justified by the fact that both p’ and a®
are minimum-phase; hence, the significant contributions to the sums come from small z and
s._(The approximation is a necessary consequence of the fact that C does not commute
with PA.) After defining gf = p%/p}, e, = r,/ph, and m =l +k, we manipulate indices and

interchange summations in equation (4) to obtain

m | k ¢ o
Z Zguas~u Yi-s = €

s=0u=0

If we define the e; to be prediction errors, then the quantity in parentheses must be a
¢

time-varying prediction error filter of length m +1 which we define to be

at = 3 gtal, ()
u =0
and
Bt
Loy = e (6)
§=0
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The point of the development thus far has been to put the model given by equation (1)
into the form of equation (6); APEF algorithms are based on this form. Given a trace Yy;, the
various APEF algorithms compute the prediction errors g; while allowing the PEF coefficients
a§ to vary more or less slowly with time {. We now establish a closer connection between @

and the changes in a! with time.

Recall that pf =p'! *(1+g—¢) where p°=6 and &£~0.64/Q. Defining
7 = —&/(1+&) & -0.64/ @ and using the definition of g{, we obtain g* = gt~ *(1,y) where

g°® = 6; or, in other words, gt is the tth convolutional power of (1 +7) with coefficients

gt =
b (t —u)u!

We now rewrite equation (5) as

ot = 3 oo (7)

Bl € 75 1172 B

Examples are

L
I

al +ty

ad +tyad + ____yzt(tz—ﬂ

Q
¥
i

and so on. Verify that for no attenuation, ¥y -» 0, and a! = a®. An alternative, useful way of

expressing equation (7) is

al! = al ' + yat-} (8)

Also, recalling that af = 1, we note that

0.647
Q ]

af = at T+ 7y~ ot 7 -

(9)

a relation we shall find useful in the following discussion.
[
Q-ignorant adaptive prediction error filtering

We are now equipped to investigate the first of the two possibilities stated earlier; we
attempt to learn @ from the way in which an APEF, one which knows nothing about the physi-
cal process of attenuation, adapts. From among the many existing APEF algorithms, we

chose two as generally representing the capabilities of APEF. The first (hereafter referred

SEP-28



Hale 215 @ ond adaptive prediction error filters

to as APEF1), derived by Lee et al (1981), is a recursive least squares algorithm which,
according to the authors, has "fast parameter tracking capability compared to gradient
based algorithms.” An example of a gradient based algorithm is that derived by Widrow
(1970) and implemented in a seismic data context by Griffiths et al (1977). For our pur-
pose, the similarities between recursive least squares and gradient based algorithms are
more important than the differences. Both types of algorithms effectively work by weighting
the input data, ;. Suppose you wanted to compute the PEF a7 from y,. Since ¥; is non-
stationary, you would place more trust in (or weight on) the samples vy, 1, ¥ ¥, than in
the samples y, 100 OF ¥,+100- APEF1 effectively computes a™ from exponentially weighted
present and past samples of y;; l.e, a” is derived from y., Ay _q, N2y, o, Ny, .a -0,
where O <A< 1 is a user-chosen parameter governing the rate of adaptation or,
equivalently, the rate at which past data is "forgotten’. Griffiths et al show how the same

exponential weighting is effectively present in gradient based APEFs.

The second APEF (APEF2) we chose was developed (to the best of the author’'s
knowledge) in the SEP around 1972, primarily by Don Riley and J.P. Burg. The algorithm has
never been published (except possibly in preprint form for the 1972 meeting of the SEG);
the author learned of it from Francis Muir in 1981. A detailed derivation of the algorithm and
a Fortran 77 subroutine to apply it are provided in the Appendix. APEF2, like APEF1, applies
exponential weighting. The major differences between the two algorithms are that (1)
APEF2 exponentially weights the prediction errors g, rather than the input data y; and that
(2) APEF2 uses future as well as present and past prediction errors to derive a”. Simply
stated, APEF2 computes a” to minimize the sum of squared
oy Ne, g Ner_, eq, Aeri1, A2y, 0 - . [Actually, as in Burg’s non-adaptive algorithm
(éurg, 1975), the sum of both forward and backward squared prediction errors is minimized.

Sée the Appendix.] Again, A governs the adaptation rate of of.

To test both APEF1 and APEF2 under optimum conditions, we applied them to a noise-
less version of the divergence-corrected trace y=Cz of Figure 1. The results for APEF1
with A = 0.97 are shown in Figure 2a. The traces 7, and (noiseless) y, are replotted for
comparison with the estimate 'rt'. The output of APEF1 is an estimate of

e, =7/ ph ®r,./(1+&)t. Exponential gain applied to the output of APEF1 yields 7.
¢

Also plotted as a function of time in Figure 2a are the first three coefficients, u.‘l, aé,
and aé , of the computed PEF. (The entire PEF was 20 coefficients long.) As expected from
equation (7), the coefficient u.ﬁ exhibits a dominant linear trend with time ¢; the slope of
this trend is an estimate of y which, in turn, provides an estimate of @. The curvature with ¢
of a} reflects the quadratic trend predicted by equation (7), while af exhibits the

predicted cubic trend.
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FIG. 2a. Adaptive prediction filtering with APEF1 (A = 0.97). r is replotted from Figure 1 for
comparison with the estimate r’. vy is the noiseless, divergence-corrected trace input to
APEF1. al, a2, and a3 are the first three coefficients of the time-varying prediction error
filter.

An obvious way to estimate @ is to fit curves given by equation (7) to the m coeffi-
cients of at. Such a procedure would necessarily include the assumption that &) is constant
over the fitting interval. Equation (8), on the other hand, suggests that an estimate of @ is
theoretically available at every time {. Although equation (8) was derived assuming a con-
stant @, time (actually, depth) variable @ can be estimated by replacing v in that equation
with ;. This substitution is strictly valid only in the absence of multiple reflections but,
even in the presence of multiples, may provide a useful estimate. An example of data for
which this substitution is dubious is that containing strong seafloor multipie reflections. Due
to the relatively high @ of water, these multiple events would be only slightly attenuated
relative to the primary events on which they are superimposed; attempts to estimate time-

variable @ via equation (8) would then yield erroneous (indeed, even negative) §.
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For our synthetic trace y;, @ = 100 is constant. Equation (8) applied to the PEF coef-
ficients of Figure 2a should then yield reasonably constant estimates; if it does not, then
our ability to estimate time-variable § is guestionable. We estimated 1/ @ using equation
(9), equivalent to equation (8) fors = 1, for 7 = 1, 50, and 100. The estimates are plotted
in Figure 2b.

time (msgec)

0 200 400 600 80O 1000

1.8
T=50 0.0252
T=100 0.0166

FIG. 2b. Estimates of 1/ & based on the coefficient a1 plotted in Figure 2a. The estimates
were computed using equation (9) for three different values of T. The short dashes
represent the correct answer, 1/ @ = 0.01; and the long dashes represent 1/ @ = O (plot-
ted for reference).

The attempt to estimate 1/ @ at each time sample (T=1) has clearly failed to produce
accurate, constant estimates. The largest errors in the estimates occur at times for which
a‘1 changes drastically which, in turn, correspond to the temporal locations of large reflec-
tion coefficients. The statistical knowledge accumulated by APEF1 and hence, each PEF
coefficient, changes as each new reflection coefficient is discovered. (Remember that
APEF1 designs its PEF from exponentially weighted past input.) The rapid fluctuations in

PEF coefficients degrade our estimate of &.

A better approach might be to admit that we cannot realistically resolve changes in &
to within a sampling interval. The traces labeled T=50 and T=100 in Figure 2b are effec-
tively the result of estimating 1/ @ from smoothed changes in af. While smoothing has
improved the estimates significantly (they are at least predominantly positive), the consid-

erable fluctuation remaining implies that a resolution of 200 msec (T=100) would still be too
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optimistic. Smoothing over the entire length of o} (T=500) yields the reasonable estimate
¢ =120.

In spite of the attention we have given to the matter, estimation of § should perhaps
be viewed as a fringe benefit of APEF; "deconvolution' of the seismic trace is likely the pri-
mary purpose. 'rt' in Figure 2a, aside from some rather large errors at early times when APEF1
is still "learning', is a reasonable estimate of ;. A comparison of this estimate with those
obtained with other APEFs, as well as with more conventional time-invariant PEF, is provided

below.

The traces in Figures 3a and 3b were computed in the same way as those of Figures 2a
and 2b, except that APEF2, again with A\ = 0.97, was used instead of APEF1. Recall that
APEF2 is an APEF with foresight as well as hindsight; it uses future as well as past predic-
tion errors to design at. This feature of APEF2 explains the relatively smooth variations with
time of both the PEF coefficients in Figure 3a and the estimates of 1/ @ in Figure 3b. With
200 msec smoothing (T=100), the 1/ @ estimates are fairly constant when compared with
the corresponding estimates in Figure 2b. If estimation of @ is even a secondary goal of
APEF, then APEF2 should be used rather than hindsight-only methods such as APEF1.

The errors in the deconvolved trace r, of Figure 3a are comparable to those of Figure
2a, except at early time where APEF2 yields the better 'rt'. APEF2, in a sense, knows what

lies ahead and, therefore, requires no learning time before yielding good estimates of r;.

In the application of both APEF1 and APEF2, the adaptation parameter A was chosen to
be A = 0.97. How critical is our choice of this parameter in estimating both 1/ & and r,?
Figures 4a and 4b, like Figures 3a and 3b, were obtained using APEF2 except that A = 0.94
was used instead of A = 0.97. Using a smaller value of A is roughly equivalent to using a
smaller window of y; in computing the PEF af. In using A = 0.94 rather than \ = 0.97, we

have effectively halved the amount of information available to APEF2 for computing each a®.

The dangers of adapting too rapidly (i.e., choosing A too small) are seen by comparison
of Figﬁres 4a and 4b with Figures 3a and 3b. The 1/ @ estimates of Figure 4b are less con-
sistent than those of Figure 3a, although the general trend is the same in both figures.
Perhaps more significant is the effect of our choice of A on the deconvolved trace. The
quality of r,*in Figure 4a is generally inferior to that in Figure 3a. The faster adaptation rate
has allowed APEF2 to undesirably attack reflection coefficients along with the attenuated

source waveform. Compare, for example, the estimates at about 620 msec.

The sensitivity of both 1/ @ and r;, estimates to A\ suggests that this parameter should
be chosen carefully. In most cases, our choice will be conservative; we will choose A as

close as possible to unity while still coping with the non-stationarity of the trace y,. We
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FIG. 3a. Adaptive prediction filtering with APEF2 (A = 0.97). r is replotted from Figure 1 for
comparison with the estimate r’. y is the noiseless, divergence-corrected trace input to
APEF2. a1, a2, and a3 are the first three coefficients of the time-varying prediction error
filter.
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FIG. 3b. Estimates of 1/ § based on the coefficient a1 plotted in Figure 3a. The estimates
were computed using equation (9) for three different values of T. The short dashes
represent the correct answer, 1/ ¢ = 0.01; and the long dashes represent 1/ @ = 0 (plot-
ted for reference).
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FIG. 4a. Adaptive prediction filtering with APEF2 (A = 0.94). r is replotted from Figure 1 for
comparison with the estimate r’. y is the noiseless, divergence-corrected trace input to
APEF2. a1, a2, and a3 are the first three coefficients of the time-varying prediction error
filter.
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FIG. 4b. Estimates of 1/ @ based on the coefficient a1 plotted in Figure 4a. The estimates
were computed using equation (9) for three different values of T. The short dashes
represent the correct answer, 1/ & = 0.01; and the long dashes represent 1/ @ = 0 (plot-
ted for reference).
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can imagine, however, data in which non-stationarity is severe enough (e.g., @ is low
enough) that no suitable A can be chosen. In the next section of this paper, we present an

APEF method for which no adaptation parameter A is required.

Q-wise adaptive prediction error filtering

The two APEF methods discussed above have an important common feature: they adapt
by weighting data. APEF1 weights input data and APEF2 weights output prediction errors,
and weighting is equivalent to throwing away useful information. For example, if the model
given by equation (1) is valid, then information pertaining to the time-invariant AR parame-
ters af,af, - -, al is contained in every reflection found in z. The basic source
waveform does not change with time; the earth’s impulse response QDr is the time-varying

function.

We can avoid weighting by constraining our APEF to compensate only for attenuation
effects; this is the second of the two possibilities mentioned earlier. We simply use an APEF
which "understands"” attenuation. The problem is then to estimate both the AR coefficients

a® and Q. Once these parameters are estimated, we can estimate r, using equation {(4).

Our starting point for deriving a Q-wise APEF is equation (6) which, when combined with
equation (7), becomes

m ¢ m k Flyu 0 ( )

e = Y —g = _ —'Las_ 10

The standard approach in prediction error filtering is to minimize a sum of squared e; with

respect to the unknown parameters, in this case v and the ! coefficients al. This least-

squares approach works best when e, is a linear function of the parameters, for then the

"best"” parameters may be found by solving a linear system of equations. In equation (10),

however, e; is a non-linear function of ; an alternative method of solving for the parameters

is required.

Assume for now that the a0 are known and define v = 7 + dy where 7 is a guess of the

v which minimizes the sum of squared ¢;(y). Then define

¢
2

a
B(dy) = Tel7+dy) ® Tle + 5 dy
t 4

where the partial derivative is to be evaluated at . Setting dF/ d(dy) = O and solving for
dy yields
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Partial differentiation of equation (10) yields (after some manipulation of summation indices)
0e;/ 8y = te, _, so that

Yteg(Pe ()
i

Lifel ()

i

d?l = - (11)

Equation (11) makes good sense. Suppose our guess ¥ is a very good guess so that
dy = 0; equation (11) then requires that the first lag of the "autocorrelation’" of weighted
e, equal zero. Except for the weighting by £, this requirement is familiar from our experience
with time-invariant PEF, a process which is based on the assumption that the prediction
errors e, are mutually uncorrelated random variables; i.e., E(e;e,,,) = O for 7 ¥ O where £
denotes ensemble averaging. In practice, we approximate ensemble averaging with time
averaging which may include some time-dependent weighting. Because a change in ¥ has its
greatest effect at late traveltimes (for this is where attenuation has had its greatest

effect), the weighting by ¢ is quite reasonable.

Why is only the first lag of the error autocorrelation important in determining the pertur-
bation dy? The answer lies in the fact that trends with frequency in a power spectrum,
such as the decaying exponential trend produced by attenuation, are most affected by the
value of the first lag of the corresponding autocorrelation. {Recall that the power spectrum
of a time series is the Fourier transform of its autocorrelation.) The values of greater lags
affect more rapid variations in the power spectrum {e.g., notches in the spectra of marine

data due to multiples or bubble pulses).

Given then that equation (11) is both mathematically and intuitively reasonable, we
propose the following iterative algorithm for estimating the unknown parameters y and the I

coeffiecients al and, ultimately, 7.

Initially v =% al = 8; y; = the divergence-corrected seismic trace
k
(1) zy = Zpéyt—u
©=0
2 a® = PEF (z;)
(3) ' Ty = i asoxt -s
s=0
Direriy
4 d = -t
(4) v S
t

if |dy| < small go to Finally
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(5) vy = y+dy
go to (1)
Finally Q = -0.64(1+y)/y

Step (1) is the application of the inverse Q-filter p! (derived from ) to y;,. PEF in
step (2) of the algorithm is a subroutine which computes a time-invariant, minimum-phase,
unit-lag prediction error filter from x; computed in step (1). This subroutine is that used in
conventional spiking deconvolution. Step (3) is the application of the filter derived in step
(2). dvyis computed in step (4) using equation (11) with 7, replacing e;. Recall that r; is
just an exponentially gained version of ¢,; the approximation in using r; is made merely to
save the cost of computing e;. If dv is insignificant, then we stop iterating; otherwise we
update 7y in step (5) and go back to step (1). Finally (if desired), we compute from  the

estimate of Q.

Figure 5 illustrates the application of this iterative algorithm to the noiseless synthetic
;. The initial guess for ¥ used to start the algorithm was 7 = 0. The trace labeled r1’ is
the first estimate of r; computed in step (8). Because we initially assumed no attenuation
(7 =0), r1’ is also the result we would obtain with conventional spiking deconvolution.
Notice that the high frequencies have not been restored at late times and that they have
been overamplified at early times. The latter effect would be even more pronounced had we

compensated for the amplitude decay with time of y; prior to computing a®in step (2).

Successive estimates r2°, r3’, ... demonstrate progressive improvement with each itera-
tion. The algorithm has effectively converged after about four or five iterations. The trace
labeled r” is the final estimate of r; obtained after ten iterations; the final estimate of &
was { = 99.6, essentially the correct value of 100. To decrease the computational burden,
the crudest approximation to the inverse Q-filter p‘ was used for all but the last iteration.
As discussed by Hale (1981), p‘ Npt_l ¥ (1+¢,—¢) is only an approximate inverse Q-filter
which can be improved by increasing the length of p! & (1+¢,~—¢) from two to, say, ten coef-

ficients. A ten coefficient approximation to pl was used in computing 'rt'.

Early experiments with Q-wise APEF showed that the algorithm as presented above is
rather cautious in converging. The results presented in Figure 5 were obtained by updating
v with twice the perturbation computed in step (4). The algorithm still never over-corrected
v (i.e., dy was always negative), suggesting that even larger perturbations may be used to

speed convergence.

Not surprisingly, the estimate r, obtained with Q-wise APEF (Figure 5) is generally
superior to that obtained with Q-ignorant APEF (Figures 2a and 3a), because Q-wise APEF,

unlike Q-ignorant APEF, uses all of the input data to estimate the model parameters ¢ and
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FIG. 5. Adaptive prediction error filtering with a Q-wise APEF. r is replotted from Figure 1. vy
is the divergence-corrected, noiseless, synthetic trace. r1’, r2’, ... are successive esti-
mates of r produced by the iterative Q-wise APEF. r’ is the final estimate of r; the final esti-
mate of @ was @ = 99.6.

¢
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a® We must not assume, however, that Q-wise APEF will always produce better estimates
when applied to real seismic data. Performance will always on how well a particular set of

data fits our model.

Noise

Of the many assumptions and approximations that have been made above, two are par-
ticularly regrettable: (1) in Q-wise APEF, the assumption that ¢ is constant over a lengthy
time (actually depth) interval and (2) in both methods, the assumption of a noiseless,
divergence-corrected seismogram. Regarding the first assumption, Q-wise APEF as
described in this paper can only estimate a § (actually 1/ @) averaged over the interval
from which the estimate is derived. No attempt has yet been made to modify the algeorithm
for variable &. Initial results with Q-ignorant APEF suggest that these algorithms are also

unable to resolve rapid variations in § (recall Figures 2b, 3b, and 4b).

The second assumption of no noise is even more troublesome. We applied both Q-
ignorant and Q-wise APEF to the noise contaminated y; in Figure 1 to obtain the results
shown in Figures 6 and 7, respectively. At early times, when the signal level is high relative
to that of the noise, results in Figures 6 and 3a (the noiseless results) are quite similiar; at
late times, they are quite different as we should expect. Effectively, Q-ignorant APEF at

late times stops learning about Q and starts learning about noise.

Q-wise APEF, on the other hand, cannot adapt to the time-variable signal-to-noise ratio.
Hence, as shown in Figure 7, the estimates of r; change little with each iteration; r & r1”.
In’\ other words, Q-wise APEF shows little improvement over conventional spiking deconvolu-
tion. The estimated @ is & ~ 600.

The results in Figures 6 and 7 suggest that "ignorance is bliss" when applying APEF to
noisy seismic data. An APEF which "knows' everything about attenuation but nothing about

noise may perform worse than an APEF which knows nothing at all.

Conclusions

Beginniﬁg with a simple model for an attenuated seismic trace, we can relate the time-
variations of an adaptive prediction error filter to @; i.e., we know how an APEF responding

to attenuation effects should behave.

Of the two unconstrained, Q-ignorant APEF algorithms we have tested, APEF2 produces
better estimates of both @ and r; than does APEF1. We attribute the differences between

results obtained with these two algorithms to be due to the ability of APEF2 to use future as
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FIG. 6. Adaptive prediction error filtering (APEF2 with A = 0.97) of noisy data. r is replotted
from Figure 1; y is the noisy, divergence-corrected trace, also from Figure 1. r’ is the esti-
mate of r and a1, a2, and a3 are the time-varying coefficients of the prediction error fiiter.

wéll as past data in designing a local prediction error filter. The basic fault of Q-ignorant
algorithms stems from their adapting by weighting. Weighting not only forces us to neglect
useful information about time-invariant components of the seismogram; it also requires that

we choose a priori the adaptation rate (the weighting factor \) of the APEF.

Weighting is unnecessary if we constrain the APEF to adapt only to attenuation
effects. A Q-wise APEF can potentially yield better estimates of @ and 7; than can a Q-
ignorant APéF. The Q-wise APEF is an iterative application of inverse Q-filtering and time-
invariant spiking deconvolution; it is particularly efficient in filtering many traces succes-
sively, for then the estimate of ¢ from one trace is a good first guess of @ for the next
trace. The basic fault of Q-wise APEF is that it cannot adapt to a time-varying signal-to-

noise ratio. One untested solution to this problem may lie in estimating an ambient, white
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time (msec)
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FIG. 7. Q-wise adaptive prediction error filtering of noisy data. r is replotted from Figure 1;
y is the noisy, divergence-corrected trace, also from Figure 1; r1’, r2’, ... are successive
estimates of r produced by the iterative Q-wise APEF. r’ is the final estimate of r; the final
estimate of § was § ~ 600.
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noise level along with auto-regressive coefficients and §; another may involve the use of a

bandlimited inverse Q-filter.

Neither Q-ignorant nor Q-wise APEF appears capable of resolving rapid depth variations
in §); APEF is not yet likely to be useful in detecting an abrupt Q-contrast associated with a

gas sand. Lateral, or rather, trace-to-trace variations in § may be more reliably estimated.
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Appendix: an adaptive prediction error filter with foresight

Let y, denote the input time series known for t = 0,1, - - -, n—1; and let a; , denote

the kth order prediction error filter with Z-transform
Ak(Z) =1+ u’l.kZ + azkzz + -+ (lk'ka

We guarantee a; ; to be minimum-phase for all k& by building g, ;, with the Levinson recursion:

Ak(Z) = Ak—l(Z) “CkaAk_l(Z_l) (A1)
starting with Ao(Z) = 1. If we know ¢, fork =1, 2, - - -, m, then we can find, using equa-
tion (A1) recursively, the prediction error filters of orderk =1, 2, - - -, m.. Now define both

forward and backward prediction errors:

k

fer = ans,kyt—s (A2a)
8=

bt.k = ias.lcyt—luks H t =k,k+1s te )n_1 (A2b)
s=0
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Using equation (1), one can derive the following recursive forms for equations (A2):
Fee = fere—1 = Cebeor1x
bix = bi1p-1 —Cefre—1 5 L=k, k41, -, n—1

with initial conditions
Sto = bo =y 5 £t=0,1, ,n-1

Next define an exponentially weighted sum of squared forward and backward errors:

n—1
E‘t(ck) = 2 Alt"sl(fsz'k + bszk)
s=k

1l

n-1
Zk}\lt_s’[(fs,lc—l —Cibs1-1)* + (bs 1k 1 — e fse-1)]
8=

where 0 < A < 1. We choose ¢; to minimize E,. Setting 8L,/ dc, = O yields

-1
212 A]t_slfs,k:-—lbs—l.k—l
Cepe = _ls_k (A3)
72 MESI(FEe 1 + b2 1)

s=k

The subscript £ on c; . is appropriate because ¢, is obtained by minimizing F;; for A < 1,
¢ . depends heavily on the forward and backward prediction errors centered near the time
L, less so on the errors far from {. A different value of £ would imply a different (shifted)
weighting of the errors, resulting in a different value of ¢; ;. If desired, a different predic-
tion error filter 4 ,(Z) can be constructed foreach t =k, k+1, ---,n—1. For A =1, ¢;

will be constant with respect to £.

The choice of exponential weighting in equation (A3) leads to a computationally effi-
cient method for computing each of the cip for £ =k, k+1, - - ,n—1. Consider just the

numerator of equation (A3) and, for now, drop the subscript k. Define

=1
Nt = znzk)\lt—s ;fsbsﬂ
§=

H

t—1 n-1
2N fbgy + 23N fobg
s=k s=t

fit

N+ N&
For the first sum
-— ‘ t_
Neyp = ZAZ)\ sfsbs—l
s=k
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t—1
2)\(ft bt—-l + Z At—sfsbs—l)

s=k

i

A(th bt—l + Nt“) M Nk_ =0

and, likewise, for the second sum

n-—1
Nity = 2N 3 Mok
s=t—1

-1
PANIfy by + 2N foby )
s=t

2fi b2+ AN 5 Ny =0

In the same manner, the denominator of equation (A3) can be split into two terms, each with

its own recursion:

D,

it

n—1
YIAESI(r2 + 02 )
s=k

t—1 n-1
= Z At_S(fs2 + bsz-l) + 2 )\s_t(fsz + bszwl)
s=k s=t

Il

Do+ DY
The recursions are
Divi = MfE+bf, +D7) 5 D=0
Dty = fEL+bf, +NDF 5 Di=0
In‘summary, the order (k) recursions are
St = Jte—1 = Ctrxbio1k
bee = bryk-1— Cpfie
where (replacing the subscript k)

o = Nig _ Nip + N
tk = = —=
Dy x Dii + D

and the time (¢) recursions are

It

Nk M2fix bt ye-1+ Niz) 5 Nepe=0

Neige

2ft vkabigxp—1 + AN, 5 Npp =
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Diie = NFfeor +02 0600 + D) 5 Dix =0
Dfg = Flak—1 +b0fpk—1 +ADN 5 Die =0

A Fortran77 subroutine to perform time-variable prediction error filtering using the above
equations is provided below. Note that one need not compute the time-variable prediction

error filters 4; ,(Z) to compute the prediction errors f; (i.e., the "deconvolved’ time series).

¢ subroutine to perform time—variable prediction error filtering

c via a medified Burg algorithm

c SYNOPSIS:

¢ call tvburg {y.nk,Jambda,f,b,nm,dm)

¢ PARAMETERS:

c inputs:

c y input time series

c n length of y,f,b,nm,dm arrays

c k length of prediction error filter

c lambda adaptation rate parameter — lambda = 1 implies nc adaptation,
c lambda = .5 implies extremely rapid adaptation, a typical
c value might be lambda = .97.

¢ outputs:

c f prediction error filtered y (forward prediction errors)

c b workspace Sbackward prediction errors)

c nm workspace (necessary to avoid roundoff errors)

c dm workspace {necessary to avoid roundoff errors)

c

subroutine tvburg (y,n,k,lambda,f,b,nm,dm)
implicit undefined (a—z)

integer n,k

real y(n),f(n),b(n),rm(n),dm(n),lambda

integer i,j

real ¢,np,dp,fold

d(o)lO i(=) 1,n

(i) = y(i
10 b(i) = y(i)

do30j=2k

nm§j; =Q.

dm(j) = 0.

do20i=jn-1

nmgi+ 13 = lambda * énmélg + 2. * £(i) * b(i—1))
20 dm(i+1) = lambda * (dm(i) + £(i) * f(i) + b(i—1) * b(i~1))

np =0.

dp = 0.

do30i=n,j—-1

np = lambda * np + 2. * £(i) * b(i—1)
dp = lambda * dp + (i) * (i) + b(i—1) * b(i—1)
¢ = (nm(i) + np) / (dm(i) + dp)

fold = f(i)

£(i) = fold — ¢ * b(i—1)
30 b(i) = b(i—1) — c * fold

return

end
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RESPONSIBILITIES - Sept. 1981

Problem Primary Responsibility Backup Responsibility
crashes Jeff Larry/Rick/Hale/Chuck
AP Larry Jeff

S.1. Larry=80 Rick=S1

air conditioning Kai Hale
RP06,CDC air filters Kai/Alfonso Pat

RPO7, getdev Jeff Hale/Chuck
Add-on memory Alfonso Chuck
plotters Chuck Larry

line printer Bert Hale

Gigis Jon/Pat -
Datamedia Pat/Kai -

backups Hale Larry

AED Chuck Rick

tape drive Bert Rick

tape archives Rick -

cleaning - room 467 Okaya COCORP
cleaning - room 471 Thierry COCORP

plot program maintenance Rick Jon




