171

Numerical Error and Migration

Bert Jocobs

Abstract

Finite difference migration routines require the solution of a sparse system of linear
equations. If a bad algorithm for finding this solution is used then large errors will be intro-
duced into the migration. In the worst of cases, these errors can be large enough to ruin the
stability of an otherwise stable problem. This can be prevented by using Gaussian elimina-

tion with partial pivoting.

Numerical Error at Low Frequencies

In the course of an attempt to use a "bullet-proof"' pentadiagonal imaging procedure a
mysterious instability was discovered. Since such routines are guaranteed on mathematical
grounds to be stable it was concluded that the problem was numerical. The problem disap-
peared when either the lowest temporal frequencies were ignored or when a different linear
equation solver was used. It was therefore concluded that the problem lay in the use of a

compleXx, pentadiagonal version of the routine £ri which can be found in FGDP.

Estimates of Relative Error

At any given 2z -step and for a given frequency w, part of the process of downward con-
tinuation of a wavefield involves the solution of a banded, complex system of linear equa-
tions. If the matrix of coefficients is denoted by A and we are given a known vector & then
we are called upon to solve for x in a system Az = b. Usually x cannot be found in a finite
precision computational machine. The computed result can be considered to be the sum of z

and a perturbation éz.

SEP-28

Jaocabs 172 Numerical Frror and Migration

To quantify the error requires the introduction of a norm. A convenient one is the 2-

norm. We denote the 2-norm of the complex vector z by
"Z ” = (xHx)z/z

where z¥ is the Hermitian conjugate transpose of x.

Relative error is a bit tricky, since we might consider either || 8z ||/ ||z || or ||sz/ z||.
In this paper the former will be used, so that
0x
E, 1=
i =i
This leaves us with the problem of getting good estimates of the true values of z and éz.
One way of doing this which works most of the time is to compute estimates of z with both

double precision and single precision linear equation solvers. Denoting the two estimates by

zq and zg, respectively, then an estimate of £, can be had by implementing

I} 25 () —z4 () ||
I za(e)]

Erglw) =

This was done within a downward continuation procedure so that the error estimates would
be reasonable ones for seismic problems. The estimates are not the upper bounds usually

considered in numerical analysis.

A Comparison of Linear Equation M ethods

Four linear equation solvers were tested for their suitability as part of a pentadiagonal
(two higher in order than the 45-degree equation) downward continuation algorithm. One of
the linear equation subroutines tested was the subroutine pentfc from SEP-26, page 180.
Gaussian elimination for banded, complex matrices was implemented as well. Algorithms of
this type, with and without partial pivoting, were described by Thorson in SEP-20. Complex,
banded Householder elimination was also tested, with an algorithm adapted from Stewart
(19738). It is found in Appendix A.

The relative estimates for these four algorithms are presented in Figure 1. In all four
cases, the only significant errors were made in frequencies below 8 Hertz. Commonly, such
frequencies are not propagated, but it is worthwhile to design our algorithms so that they

are insensitive to choices of an input parameter such as cutoff frequency.

Householder elimination is more expensive and has larger relative errors at low frequen-
cies than any other of the methods examined. This is probably because it involves a larger

number of computations than its competitors. Its use in downward continuation algorithms is

SEP-28

Jacabs 173 Numerical Frror and Migration

not recommended. Gaussian elimination without pivoting and pentc behave roughly the
same. Since penfc is a form of /.U decomposition which does not employ pivoting, this con-
clusion is not surprising. Gaussian elimination with partial pivoting has better error behavior
at low frequencies than the other three algorithms. The improvement is not that spectacu-
lar, but it is enough to stabilize the downward continuation of the data which caused explo-

sions when pentc was used instead.

0.8] T I]

% 008 — 3

C

C

(6]

_% 004 B =

o P

® 0.2 -
] i |]
5 10 15 20 2b

freguency (Hz)

FIG. 1. Relative error versus temporal frequency for a downward continuation problem. Only
the first 26 frequencies after DC are plotted. Zero frequency is the blank at the left margin.
For curve (h), the linear equation solver was Householder elimination. For curve (p), the sub-
routine pentc from SEP-26. Curve (n) was generated by a Gaussian elimination routine with
the pivoting option turned off. Curve (g) is the result of employing Gaussian elimination with
partial pivoting.

3

The bad behavior of Householder’s method was a little unexpected in that it’s relative
error under small perturbations in the input data is more tightly bounded than its competitors.
One step in the algorithm which might be expected to cause problem is the scaling employed
to prevent overflow and underflow. Removal of the loops which implemented the scaling has
some influence on the the relative error estimates for Householder elimination, but the

improvement is not large enough to make it competitive with Gaussian elimination with partial

SEP-28

Jacobs 174 Numerical Frror and Migration

pivoting.

REFERENCES

Stewart, G.W., 1973, Introduction to Matrix Computations: New York, Academic Press, Inc.
Thorson, J., Gaussian Elimination on a Banded Matrix: SEP-20, pp. 143-54.

Appendix A - Complex Householder Elimination for Banded M atrices

The following routine is a complex, banded version of the Householder elimination rou-
tine discussed in Stewart (1973). It employs a scaling which prevents overflows and
underflows. Wherever a real number is expected as the result of some complex arithmetic, a

real floating number is employed.

SEP-28

hous.f

OO ODONON

08

10
06

12

14

16

18

19

175

Householder triangularization for complex and
banded matrices. The input matrix should be
stored as bands according to the recipe in
Thorson {(SEP—20).
Inputs: @&, matrix to be triangularized plus
extra columns of scratch space
m, the bandwidth of "a"
n, the length of the diagonal of "a"
The algorithm finds a unitary factor Q and an
upper triangular factor R for "a", such that
"a=QR." On input "a'"' contains m columns of infor—
mation. On output, the vectors needed to con—
struct Q are stored in columns 1 through (m+1)/2
and the bands of R are stored in columns (m+1)/2+1
through m+m/2. Columns m+1+m/2 through m+2+m/2
contain still more parameters needed to construct
Q. Since all the parameters needed for forming
the unitary matrix Q are stored away, many right
hand sides can be solved for with a single
triangularization step.
subroutine hous{a,m,n)
integer i,j,k.lim,m,n,r
real*4 eta,pi,reta,sumsq,vka
complex*8 a(266,9),cdir,rho,sigma,tau,v(256)
r=(m+1)/2
do00i=1inmn
do 02 j = m+1,m+r-1
a{i,j) = cmplx({0.0,0.0)
continue
continue
doC4k=1n-1
eta= 1.0
lim = min{n,k+r—1)
do 06 i = k,lim
if(.not.(eta .1t. abs(real(a(i,k—i+r))))) goto 08
eta = abs(real(a(i,k—i+r)))
continue
if(.not.(eta .It. abs(aimag(a(i,k—i+r))))) goto 10
eta = abs(aimag(a(i,k—i+r)))
continue
continue
if(.not.(eta .eq. 0.0)) goto 12
a(k,m+r) = 0.0
a(k,m+r+1) = 0.0
goto 13
continue
reta = 1.0/eta
do 141 =k,lim
vsi) = a(i,k-—i+rg *reta
a(i,k—i+r) = v(i
cantinue
sumsq = 0.0
do 16 i = k,lim
sumsq = sumsq + (real(v(i)))**2+(aimag(v{i)))**2
continhue
if(.not.(v(k) .eq. 0.0)) goto 18
sigma = sqrt(sumsq)
goto 19
continue
vka = (real{(v(k)))**2-+(aimag(v(k)))**2
sumsq = sqrt(sumsq/vka)
sigma = v(k)*sumsq
continue
rho = —etat*sigma

Aug 25 17:06 1981

hous.f

FPage 1 of hous.f

hous.f

22

24
20
13
04

Noo0n

28

30

32
26

36
34

176

v(k) = v(kZ + sigma
a(k,r) = v(k)

pi = real(sigma)*real(v(k)) + aimag(sigma)*aimag(v(k))
pi = 1.0/pi

a(k,m+r) = pi

a(k,m+r+1) = rho

do 20 j = k+1,min{k+m-1,n)

tau = 0.0

do 22i =k,1lim

tau = tau + conjg(v(i))*a(i,j—i+r)
continue

tau = tau*pi

do24i=klim

a(i,j—i+r) = a(i,j—i+r) — taurv(i)
continue

continue

continue

continue

a(n,m+r+1) = a(n,r)

return

end

Back substitution. The inputs are consistent
with those of subroutine hous. The vector
"p" is the right hand side on input and the
solution vector on input.

subroutine solve(a,b,m,n)

integer i,j,k,m,n,r,lim

real*4 pi

complex*8 a(256,9),b(1),tau,v(256)

r = (m+1)/2

do26 k = 1,n—1

lim = min(n,k+r—1)

pi = a(k,m+r)

do 281i=k,lim

v(i) = a(i,k—i+r)

continue

tau = 0.0

do 30 i = k,lim

tau = tau + conjg{v(i))*b(i)

continue

tau = tau*pi

de 32i=k,1lim

b(i) = b(i) — tausv(i)

continue

continue

b(n) = b(n)/a{n,m+r+1)

do34 k =n—-1,1,—-1

. do 36 j = k+1,min(k+m—1,n)

b(k) = b(k) - a(k,j—k+r)*b(j)
continue

b(k) = b(k)/alk,m+r+1)
continue

return

end

Aug 25 17:06 1981

hous.f

Page 2 of hous.f

