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Recursions for Migration in Slant Frames

Bert Jacaobs

Abstract

Profiles require migration operators which handle large dips. One way of doing this is to
use a high order migration operator. Another is to use a migration operator aimed to migrate
dips centered at a predetermined angle, say in a slanted coordinate system. A simple recur-
sion governs an infinite sequence of increasingly accurate slant migration operators. The

first two terms of the sequence are the 15~ and 45-degree equation operators.

Introduction

The migration of common shot gathers might be preferred to stacking when moveout is
strongly non-hyperbolic, when a point scatterer needs to be imaged. Migration might also

be useful in the estimation of laterally varying velocity.

Common shot gathers have dips on them of anywhere from O to 90 degrees. Most of
the dips present have the same sign. If this is in fact the case, it might be expedient to use
a coordinate frame which reflects this fact. Migration operators in this frame will do the
same job at less cost when compared to migration operators in the unslanted coordinate

system.

We will restrict our attention to media which are laterally homogeneous. Phase shift
methods are applicable in such media but have difficulty at boundaries. Finite difference

techniques do not have these problems, so they will be used instead.
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Slant Coordinates

The most fundamental parameter in a system of slant frames is the ray parameter p.
We will consider media in which acoustic velocity V is a function of depth, 2z, alone. In such
media, p is constant along raypaths. If the product pv is identified with the sine of the pro-
pagation angle then we may define a new variable s which is equal to the tan of the propa-

gation angle.
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It is clear that p must be restricted to values less than 1/ V. in absolute value. With

these definitions slant coordinates can be defined.
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' = x — 82
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Applying these to the wave equation will require changes of variable in derivatives, too.
Consider a differentiable function § and let @(z’,z",t’) = @(z,2,t) be the same field in the

new coordinate system. Then
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None of these derivatives have causal properties which will be required in the discretiza-
tions df a computer. Letting ), denote a causal z-derivative, it can be established that
—-D;,.H is an anti-causal z-derivative. Similarly, I); is a causal {-derivative operator, D, is a
causal z-derivative, —Df is an anti-causal t-derivative, and —DJ is an anti-causal z-

derivative. -

The migration equation for a pressure wave field in a laterally homogeneous medium in

an unslanted frame is given by
Jae H 1/2
DEQ = —(-DI?*+ VD] Dzﬂ AQ (1)

where P is pressure, « is the bulk modulus of the medium, § = V?P/!?, and A is the
acoustic slowness of the medium. A migration equation in a slant coordinate system can be

obtained by substituting according to a schedule derivable from the definition of the slant

SEP-28



Jacobs 163 Migralion Recursions in Slant Frames

coordinates and the chain rule for partial differentiation. If we drop the primes, the schedule

is as follows:

Dg « Dt
Dz « Dz —th
D, « D, —sD,

The assignments indicated are not obvious and will be justified later. Substituting into

equation (1) yields the slant migration equation
122
Dfg = [st—[(— N2+ V(DE-pDH(D, —-th)V} A]Q (2)

This equation should be split in three parts to get an effective, accurate migrator. The three

equations which must successively be solved at every z-step are

DHQ = —-DFAQ
DFg = sDHQ

1/2
prg = [p{f—[(—p{f)hV(D;f—pDﬁ)(Dz —ppt)ﬂ ]AQ

Before proceeding further, it is expedient to work in the frequency domain. To do this, we
replace —D/ with ie—¢; or 1w—&y, depending on location in the slant migration equation. The
substitution is not arbitrary because we will still want the overall operator to be negative
definite and will want (Df—pD) (D, —pD,) to be Hermitian.

~DHQ = (iw—£,)AQ
DHQ = sDFQ

D@

1

{(iw_al)_[(i w=21)?+ V(DF—p(—iw—g2))(D; —p (i w—e2)) ‘1”2}/\@

Of these three equations, the first two can be solved analytically. Thus, the three way split

is more or less equivalent to

e (iw—e;)AAzZ

Q(x,2 +Az,0)
Q(x,z ¥Az,w)

Q(zx,z,w0)
Nz +s5Az,2,0)

H . » 2 H . . 12
DiQ = (zw—sl)—[(zw—sl) + V(D —p(—iw—e))( D, —'p(zw—sz))V] AQ
The last of these equations still needs to be discretized with respect to both z and z in a

meaningful way. This will involve making approximations to the various derivatives in the dif-

ferential equation.
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Derivative Approximation

The simplest causal representation of the first z-derivative of a function f is given by

Df = o—Bf

where 5 is a causal operator. The matrix representation of B has a diagonal of 1’s and a
subdiagonal of -1°s and operates on a vector defined at discrete and regular intervals along
the z-axis. The distinction between an operator and its representations is an important one
because it allows us to use the same notation for continuous and discrete operations of

similar nature.

If B’ has a triangular matrix representation with a diagonal and a subdiagonal of 1’s

then another causal approximation to the x-derivative can be written as
D.f = 2(B)Bf
x A.’L'

This z-derivative of f is equivalent to the the Crank-Nicolson approximation and is the one

used for the depth derivative in migration problems.
A rational, causal z-derivative for f can be formulated by setting

-1

_ 1 __«
DZf—EB[ T+a 0] T

where o is a real and positive humber. The advantage in using this derivative is that it leads
to an unusually good implementation for second x -derivatives. With a little algebra it can be

proved that

-1
~DID,f = ——pBH|I-

! _ X H
(A2 )? =~ BB

Gra® 0 ) T

The operators B and B¥ have some useful algebraic properties that will be used later. The
most important of these is that BBE = pHp = pH1 B, Since B and BY commute

-1
[e3

—=__ BpH
(1+a)?

D, D = (B+BH)

<

This result will be used in the slant migration equation when the dissipation parameters are
independent of z. Since it has already occurred several times, BB¥ is important enough to
merit its own symbol. Thus, we set BB¥ = T, where T is an operator whose matrix
representation has 2’s on its diagonal and -1°s on both its superdiagonal and subdiagonal.

Note that 7 is real, symmetric, and non-negative.
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The Slant Focusing Equation

The slant focusing equation is the third equation in our three-way split of the slant

migration equation. Copying this equation for convenience,
H . . 2 H . . 172
DiQ = ('1.&)-81)—[(’&&)—81) + V(D —p(—iw—e))( D, —p (i &)_Eg))ﬁ AQ
we substitute approximations for DHp,, Dy—Df, and D, +Df. The result of this substitution

and the continued fractions which follow can be simplified by introducing a constant

B = o/ (1+) and two more operators n and 4.

d = [-8T @)
n o= L2F (A2) P T4pH DU =BT +p(82) e B+ B +ip (82) el B ~B™)]4)

If &5 is independent of z the operators n and d commute with one another. The dissipation
Parameter ¢, will be required to be z-independent as well. With all these conventions and

definitions, the resulting differential equation is
172
-DHQ = -—[(iw—sl)—-[(iw—sl)2+ Vhd‘lq ]AQ (5)

which we choose to call the slant focusing equation. Applying a little algebra and using the
Crank-Nicolson derivative in equation (5) we get

(I-0p)Q(z,z+Az,0) = (J+0p)Q(z,z,w0) (6)

2 2
Az 20 2 Az -1
[2—] A (iw—gy) +[2 nd

which has a vector space representation which is a linear system of equations.

172

o = —AZLA(W—EIH

The right hand side of equation (6) has an operator with a square root in it. The square
root should be expanded in a continued fraction and the continued fraction truncated to get

a useful migration scheme. Thus Op is equal to

: /
%—(AzA(iw—sl))2+

nd 1
nd !

L SENY 1]
> (Az Aliw—g))?+ 3

2—(A2A('i,w—81))2+ ce

nd !

The d"'’s are an annoyance that can be done without. Employing a similarity transformation

to the continued fraction, the right partial numerator can be cleared of them. The result is a

SEP-28



Jacobs 166 Migration Recursions in Slant Frames

fraction in which every partial numerator as well as every other partial denominator is equal.

Such a continued fraction is said to be periodic with a period of two.

I

;—(AzA(iw—sl))2d+ . 7 n
2—(A2A('iw—81))2+ n

(e Miw-e))d+ - -

n

This fraction has a sequence of approximants and each approximant has a numerator. Thus,
there exist sequences of numerators for the approximants of the two dperators on either
side of equation (6). The numerator of the kth approximant of the operator on the left and
right sides of equation (6) will be denoted by A,? and A,ﬁ", respectively. The denominators of
the approximants of the operators on the two sides of equation (6) cance! one another, so
they will not be discussed in this paper. It follows that the linear equation that we want to

solve is
APz, 2 +Az,00) = AVQ(z,z +Az,0)

for k large enough to be accurate for all dips present. Setting & = 1 will yield the 15-
degree equation while the 45-degree equation can be obtained when k = 2. The operators
AL and AP obey similar recurrence relations. Dropping the superscript for compactness we

get a dimensionless recursion for the two operators

A_l =7
Ao =7
A, = tnA_ + ;—(AzA(iw—sl))szo - for D, + for N

Ay = nh , + —;—(AzA(iw—sl))zAk k odd

= nd , + ;—(AzA(iw—sl))gdAk k even

&
ot
I

in terms of the simple operators n. and d, defined in equations (3) and (4).

Appendix A - Caontinued Fractions with M atrix Coefficients

The migration problem has generated a continued fraction with matrix operators for
coefficients. The algebra of these fractions needs to be developed a bit before we proceed
much further. A continued fraction generates a sequence of rational forms called approxi-
mants. For any continued fraction, we will need a quick algorithm for generating its

sequence of approximants, rules for changing the coefficients of the continued fraction in
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such a way as to leave the sequence of approximants untouched, and an understanding of

how the properties of matrices and continued fractions interact.

Given coefficients, each an N by N matrix,

ol e bl

a continued fraction can be generated. The following argument will be formal, in that the
existence of the necessary inverses and the convergence of the continued fraction will be
assumed rather than proved. With this understood, a continued fraction which we denote

will be considered, where equal to

I
I

F = byg+o C3

b1+a2

I ¢z
b2+(lsbs+"’C3

This continued fraction can be considered to be the resultant of a series of non-linear
transformations £,, where p varies from O to «. This sequence of transformations is defined

on an N by N matrix argument w and takes the form

to(’u}) = b+ w
- ! =
tp(w) = g byt w Cp p = 1,2,3,

Transformations of this type can be combined via the operation of functional composition.

For example, the resultant of operating on {, with ¢, is a transformation

1

C
+w !

Similarly, our continued fraction F' can be considered to be the limit of a sequence of
transformational compositions evaluated with some particular value of w. If F is well-

defined thén the choice of w will not matter.
F o= Flw) = limtgt ity t,(w)
P>
A limit is not useful for computations because limits usually are infinitely expensive to
compute. In migration applications it will turn out to be useful to consider intermediate terms

of the limiting sequence. The most important result in this section, to be proved by induction

in a separate section at the end, is that
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-1
Fow) = tot ty - t(w) = B, + 'wak‘lBk_l] [A,c + wag By,

Ay =1 Ag = bg ag = /

B, =0 By =1

Ary = Cpn O Ay + benog A k=123,
Bier1 = Cenr0g "By + benoggh By k=1,23,..

Now for some nomenclature: A4, is the nth numerator, 5, is the nth denominator, the ratio
B, 714, is the nth approximant, a, is the nth left partial numerator, ¢, is the nth right par-
tial numerator, and b,, is the nth partial denominator. The difference from the usual contin-

ued fraction theory lies in the distinction between left and right partial nhumerators.

There exist an infinite number of continued fractions with the same value and the same

series of approximants as F'. Consider two sets of NV by N matrices

QR

where the dj are all invertible. One continued fraction that has the same approximants as F’
can be obtained by simultaneously pre-multiplying ¢, b,, and a; by an N by N matrix e;.
This pattern of matrix multiplication is used because the pattern of matrices, ignoring by for
the moment, is basically @, M 1c; where M contains all of the rest of the continued fraction.
Premultiplying ¢, by e;le, yields o, M _,e;le,c, which is equivalent to a,(e, M) e c,. If
we look back at the fundamental recurrence formulae for 4, and 5, then it can be seen that
this transformation leaves all approximants of the continued fraction unchanged. The result

of this transformation is the continued fraction

b0+ﬂ.1 [

e2;C,

I

elb1+ela2 Co

I
b, +ay ——¢
2 3 bg + - 3
A transformation on the coefficients of a continued fraction that preserves the sequence of
approximants will be called an equivalence transformation. A much more general equivalence

transformation !bf F yields the following continued fraction:

!

bo + a,d; 7 e,
e;b,d;, +e,a.d,

escod
7 2CGo0,

stsds + -

egbgdg + egasds ESCsdg
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Appendix B - The Fundamental Recurrence for Continued Fractions

We have defined a sequence of rational transformations £,, where p varies between 0

and o and

to('LU) = b0+’|'..l)

It would be desirable to find a recurrence formula for the functional compositions

tot ts - - - £ (w). Suppose the kth composition is of the form
F(w) = B + wak_lBk_l]hl[Ak + wag A
Then
Feni(w) = Felp(w) = Flog, _[—"Ck+l)
b1 + W

With a little algebra, paying close attention to the lack of commutativity among the various

matrices, this expression can be simplified to look like
-1
Fep(w) = [(Ck+1f1k_13k~1+bk+1ak_313k)+wak?13k] [(Ck+la'k_114k71+bk+1ak—+11Alc)+waIc:—11Alc

-1
Fen(w) = [Blc+1 + w‘lic?llBk] [Ak+l + wa{h&c]

Equating coefficients yields a recurrence for both the 4, ’s and B, ‘s in terms of the partial

numerators and denominators:

Acvr = Cra108 Meoy + b1 A

_ 1 -1
Bevr = Crn1@e A1 + b1 By

The necessary initializations for this recurrence need to be found. To get the starting

points, consider the casesinwhichk = Oand k = 1.
tolw) = bg+w = {[ + O'w]_1 [bo + ]'u)]
ti(w) = (bia;t+wat) Ubathgte+wathy)
Equating coefficients again, we find that for non-zero aq

A_lz(lg A0=b0
Bo =1 By=1I
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will provide a suitable recurrence initialization. For convenience, we set oy and therefore

A_; equal to identity operators.

From the fundamental recurrence it can be seen that pre-multiplying b, and c;,; by
the same non-singular matrix will not change the approximants of the continued fraction.
The same can be said for post-multiplication of ¢, and g; and for post-multiplication of
br+1 and ag,,. These facts were used implicitly in Appendix A in the discussion of

equivalence transformations.
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