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High Order Migration When V=V(x,z)

Bert Jacobs

Abstract

A good migration scheme uses rational z-derivatives, dip filtering, and dissipation. In
the case of laterally invariant media a recursive scheme exists for deriving operators of
successively larger order which includes all these good features. When velocity varies
laterally, the recursion generates 15- and 45-degree algorithms. The recursion fails to yield

computationally useful algorithms of any higher degree which includes rational x -derivatives.

It is possible to get an algorithm of one higher order than the 45-degree algorithm with

a trick. This trick does not admit extensions to any other order of approximation.

Introduction

The use of rational approximations to the square root operator in migration schemes
was first suggested by Francis Muir. This proposal has led to the development of a
sequence of migration algorithms for use in laterally invariant media. In theory, a similar
sequence of migration schemes is generated for use in media in which acoustic velocity
varies in both spatial directions, but only the 45-degree equation has been coded up. A
method for factoring the higher order equations which retains rational approximations to the

z-derivatives is needed.

When acoustic velocity only varies with depth, the expansion of the square root opera-
tor for use in migration involves matrix operators which commute. This means that the place-
ment of the fraction bars in the continued fraction expansion is not as crucial as it might
otherwise be. Continued fraction theory leads to a recursion for generating the matrices of
migration schemes of successively higher order. When acoustic velocity varies laterally the
placement of fraction bars is much more constraining. A continued fraction approximation

again leads to a recursive scheme for generating a sequence of migration schemes of
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increasing order. This time there is a problem because the derived schemes are not compu-
tationally nice for any approximants except the two corresponding to the 15- and the 45-

degree equations.

The Pressure Wave Equation and Acoustic M edia

One-way wave equations are the foundation of finite-difference migration procedures.
In a discrete world these require the solution of a banded system of linear equations. The
algebra required for obtaining the matrix coefficients is difficult. Before attempting this
algebra, the proper one-way wave equation will be derived. Much attention will be devoted

to the causality and symmetry properties of the operators invoked.

The starting point is the wave equation for a pressure wave field P(z,z,t) in an acous-
tic medium. The medium is characterized by its density p(x,2z) and bulk modulus «(x,z,t). In
the following, we will also need to consider acoustic velocity and slowness, denoted by
W(z,2,t) and A(z,z,t), respectively. The time dependence in ¥, A, and « will allow us to

model the visco-acoustic effects of dissipative wave equations. The wave equation for P,

8 1 8P 8 1 8P 1 ,08°P

8z p 8z oz p Oz K Bt?

=0 (1)

frg = [dtft)g(t-t)

governs the propagation of acoustic waves when combined with appropriate boundary condi-

tions. For causality, the reciprocal of x will have to vanish for £ < O so that
1.y = j-dt' Lingtt -9
K o K

Unfdrtunately, insufficient information is available with which to completely specify the
two-way propagation problem. The wave field P(x,z,f) is known at z =0, but its z-
derivative there is not, so the information at the boundaries is incomplete. It is expedient,
therefore, to consider one-way wave equations which support propagation in only one verti-
cal direction. To do this, the causality of the derivatives needs to be specified and the

wave equation needs to be rearranged.
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Derivatives and Causality

The derivatives in equation (1), will be handled first. In calculus texts it is taught that

the derivative of a function f(t) is defined when both

F + A) — F(8)

lim
At -0+ At

(t) —f(t —At)

DAf() = and  Dif(t) = At|m+i S

exist and are equal. In this case, D2f(t) = DY f(¢) = Dy f(¢). This definition actually
involves three kinds of derivative operators: a right-derivative like D;', a left-derivative like
Dy, and a derivative like D° which exists when both left- and right-derivatives exist and

are equal.

The one-way wave equation is peculiar in that derivatives of the D type are not
relevant. The other two types of derivatives are and must be carefully specified. We will
need the causal derivative operators /), D,, and [;, as well as the anti-causal operators
—-DF, —DJ, and —DP. Defining positive increments Az, Az, and Af, the partial derivatives

can be defined by the six equations

[f(z,z,t) — flz—Az,z,t)

D f(z,2,t) = e —fo(a:,z,t) - f(z+Ax,z,tA‘)r—f(x,z,t)

Df(zep) = LE2) o J@ebel)  pipp, )= [Eztbe) [ (22.l)
Az Az

Dif(zzt) = LE2) =S @2t M) ey o gy = L2400 = flz2t)

At At

where limiting processes are performed if necessary. The H superscript denotes Hermitian
conjugation. To see why this should be so, consider the case of x-differentiation in a
discrete space consisting of an infinite set of evenly spaced grid points. In this space
there are no boundaries to introduce anomalous values into the differencing matrices. D,,
for instance, is a matrix operator with a diagonal of 1/ Az’s and a subdiagonal of -1/ Az ’s.
The negative of the transpose of D, is a matrix has a diagonal of —1/ Az’s and a superdiag-

onal of 1/ Az's. Thus DX has the form required for an anti-causal derivative.

The z -derivatives discussed above give a consistent estimate of the derivative as Az
approaches zero. No distinction is made between operations in a discrete world and opera-
tions in a continuum. They are not the only operators with well-defined causality that have

this property. It will turn out to be useful to consider an x -derivative of the form

1

Dof(z,2,t) = —B[ -2

1+

1
B| f(z,2,t)

Az

where 7 is a causal operator and ¢ is a real and positive constant. The operator 2
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operates on a vector defined at regularly spaced, discrete points along the z-axis, but
whose 2z and ¢ dependence may be either continuous or discrete. The advantage of making
a clear distinction between an operator and its representation is that the notation for con-
tinuous and discrete forms for the same operator becomes identical. The same operation in
discrete and continuous physical models is denoted by the same symbol. Given this defini-
tion of B, the restriction on o will guarantee the existence of the causal inverse operator
[7-a/(1+a)B] . The new definition for D, has the same limit as the old one when Az

approaches zero from above.

The new D, can be used to construct a Hermitian second- derivative operator which
provides a good approximation to the continuous second derivative over a wide range of

wavenumbers. Forming the product ——D;"Dz, simple algebra shows that

-1

—1 f(z,z,t)

X H
/| — —————B“B
(Az)?

H
BB (1+0)?

~DIED, f (x,2,t) =

where use has been made of the result that B + B¥ = ¥ 5 = BBH. If we introduce an
operator 7 = BBH, whose matrix representation has 2’s on its diagonal and -1’s on its

super- and sub-diagonals, then

-1
—-DH S - S
DD, f(z,2,t) (Bz)? T[f (T4 o) T] f(z,2,t)

Finally, we may want to implement time differentiation in the frequency domain. If the

Fourier transform of f(t) is defined by
F(w) = [dt e etf(t)

then causal differentiation is equivalent to multiplication by iw+¢ in the limit £-0+. Simi-

larly, anti-causal differentiation is equivalent to multiplication by the complex factor i w—=¢.

Causal wave equations

Migration of u_’pwards traveling waves is a process which is anti-causal in both time and
depth so —DtH and not ; will be used for temporal differentiation. With the notation and
concepts introduced in the last section the two-way wave equation for propagating back-

wards in time can be written as

1 1 1 2
~Df--D,P = Df--D.P ~ = [-0E) P = o
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where the asterisk denotes a convolution with respect to time. It will be convenient to work
in the frequency domain so that the time domain convolution does not mess up the algebra.
To avoid the introduction of an unnecessary number of new symbols, we let P stand for both

the pressure wave and its Fourier transform with respect to time. Defirie

K(x z,w) fdt K o) e

so that the wave equation can be written
—DH D, P — DHp D, P — ~—(w g)?P = 0

Since k may be frequency dependent, there is a frequency dependent phase velocity ¥ and

a frequency dependent slowness A, too.

With a change of the dependent variable on which the wave equation operates, the
parameters of the medium can be grouped together. The extrapolation will be in the z-

direction so the x- and {-derivatives are transposed to the right side of the equality.

P - K1/2D£!1_D Kl P

1
- H
KUZD-‘* p D Kl E s Kue p z Ktz K12

To get a one-way equation we need to take the square root of the operator on both sides of
the equality. Using the approximation

e V4 H1_ 1/2 P 172nHynHy1/2 P — 1/2nH 172 P

K szDK KI/ZNV DSVDV K’/"—[V DV]KM?

leads to a one-way wave equation which is as accurate as geometric optics in the z-

direction and as accurate as physical optics in the z-direction. As an added and very

neces_sary bonus, all traces of the causal derivative [, have disappeared. Since the waves

which migration handles are to be pushed downwards the z-derivative which is employed

must be anti-causal. The two-way wave equation now under consideration is

2 P 1 P
H H
[V”?Dz Vi e = KD o DK e+ (lom £)? Kl,g

To convert this equation into a one-way wave equation take the square roots of the opera-
tors on both sides of the equality. There is an ambiguity of sign in the square root which is
resolved by the choice of propagation direction. If the square root operator maps into a

non-positive real quantity then for upwards traveling waves

1
_VI/EDHvl/ZKIIDIe (iw—s) — (iw—s) + [(iw—e)? + Kf/ng;—DzK“z] 1 _f(};z (2)
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Through a change of state variable it is possible to get a differential equation in normal form
which can be approximately solved with the help of the Crank-Nicolson method. The desired
form is DFf = Opf and can be obtained in two steps by grouping V'“Zwith P/ K*/% and then
pre-multiplying both sides of the equation by A2 The result is the partial differential equa-

tion

u V7P
z KI/Z

= A8(iw—g) — (iw—s) + [(iw—s8)® + K“‘?D;,H;—D;;KM?

e VP
KI /2

The peculiar (iw—sg) — (iw—¢) in the braces on the right side of the equality was placed
there because the most accurate schemes do not solve the migration equation directly.
Instead, the migration equation is split into two partial differential equations, a phase shift
equation and a focusing equation. The two pieces are solved for alternately at each z-step.
One of the equations of the split, a phase shift equation, is easily solved analytically. The

other, a focusing equation, is the subject of this paper and can be written in the form

= [— (iw—e)A + A2 (3)

172
(iw_s)z + K1 /3D£I;_ Dz KI/Z] Al/e]

This equation will be used to extrapolate the current state variable V2P / K/ from a depth
z to a depth z +Az. An equation of the form —DJ(V2P/ K17%) = Op (V2P / K'/?) in which
Op is roughly independent of depth between z and z +Az has an approximate solution of

the form

z +Az

Lot i f dz’ Op(z")

KI/Z (.’L’ z C\))

——(z,z+Az,w) = exp

The integral in this expression can be approximated by AzOp(z) leaving us with the approx-

imate"expression for the solution. Applying this result to differential equation (3) leads to

VI /2 P

iz (x z+Az,w) =

1/2

1/2
A”e] u-(.';r:,z,w)

exp{—Az (iw—e)A+Az A2 (iw—s)2+K“2D£{-;—DzK”2 K%

The exponentiél is defined in terms of its power series. A rational approximation which

matches power series up to terms of second order (inclusive) in Az is given by

exp(AzOp)N([— Qp) 1(1+ 2 _0p)

This particular rational approximation is equivalent to the result obtained by applying

SEP-28



Jacobs 151 Migration Recursions

Crank-Nicolson to the z-derivative. Higher order rational approximations exist but will not

be considered here. The result is a linear equation of the form

1/2 172
I;{Uf (z,2+Az,0) = (J — Aé—zop)—l {7+ AT;—Op) I;(Uf (x,z,0)
1 172
Op = —-(iw—s)A+A“2(iw—s)2+K”ng;—D,,K”3 A2

The A!#'s in this equation are annoying. To get rid of them, introduce yet another state
variable @, defined in terms of the temporal Fourier transforms of the pressure and bulk

modulus.

Q(z,z,0) = A7 (4)

Kl/e

_ Az (. y_Bz
Nz, z+Az,0) = {V+ > (iw—s) >

178 -1
(iw—a)2+K”3Df;—-Dz KI/Z] Z] .

Az . Az
[V— —2—(7, w—E)+ 2—

1/
(m—s)2+K1/ZDf:)—D,KW] Z]Q(z,z,w)

This equation can be made dimensionless to improve its numerical properties. This involves
scaling by iw—&. There are several ways in which to do this. The way which seems to be
the most desirable is to lump one iw—& with each K/ This seems logically nice because it
allows us to link numerical motivated dissipation via ¢ with the physically motivated dissipa-
tion buried in the frequency dependence of K!7% If we allow = to be z-dependent then it
will not commute with D, forcing the choice of the anti- causal half derivative of Q as
another state variable. This is inconvenient but necessary if the dissipation parameters are

to be dllowed to be space variable.

(iw—e)!”

Q(z,2,0) = (iw—8)"2Q(z,z,0) = i

P (5)
Q@ (z,2+Az,0) = (6)

{é—(iw—s)"lV +7 -
Az ?

1/ -1
1+(m—s)—lKf/?ng—DzK“‘?(m—s)*I] 2] :

1/
2} Q(z,z,w0)

This difference equation is the one we would like to solve. What prevents us is the cost of

2 (V1Y
[Az(zws) V-TI+

I+ (iw—s)”lK”sz:—)—Dx K'Y (qiw—g)t

inverting and square rooting matrices. To get a cost-effective algorithm will require
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approximations that lead to linear systems of equations.

Continued Fractions for Focusing Equations

The operator in equation (6) has a numerator and denominator. Since both of them have
the same structure a study of one will suffice. Consider the numerator operator, which we

will now call &:

172

N = A%(m—s)“lv —I )+ (iw—s)“lK"ng%—D,,K“Z(iw—s)’l

The continued fraction for this function can be written in many ways because the coeffi-
cients in the expansion all commute with one another. To make the fraction more compact,

the foliowing notation is introduced:
— 2 : -1 ~H _ . -1
G = —@w-e)'V =D = (iw—e)
Az

Since | do not know how to represent the operator K?Dflp~' D, K'/? with a rational form for
D, lateral variations in density will be assumed to be gentle enough so that this operator
can be approximated by the Hermitian operator VD;L’Dz V, where Dsz is the negative of a
second differentiation operator. To get a good representation for this, set

DED, = d'n  d = Az(J ~8T) mn = Aix—T

where § is a real number between O and 1/4, and 7 is a symmetric matrix with 2’s on its
diagonal and -1’s on hoth its super- and sub-diagonals. With this restriction (/ — 87) will be
a posifcive-definite operator. The operators d and n are defined so that the recurrences

which\appear later in this paper will be dimensionally correct. With these substitutions

N

1/2
= G-1+ {0+ D Hd 'nVvDH
N =G+ - ! D HW VD, H o)
-Hyry-1 -H
21+ 5D T In VD,

Note that the D;‘HVd“nVD{H's all appear to the right of the fraction bars and that this is
not an obvious necessity. Using results from Appendix A we can give a good reason for the
operator placement used above. If Dt‘HVd“anDt‘H is singular and appears to the right of a
fraction bar then one of the approximants of the continued fraction in equation (7) will not
be well defined. In fact, D, #Vd~'nVD,# will be singular when V is a constant diagonal

operator, ¢ in D[H is equal to zero, and the corners in n. are properly chosen, non-singularity
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cannot be guaranteed. Since we want all the approximants to equation (7) to be defined, it
follows that the way in which we have written equation (7) is the only way in which to write

the fraction (up to an equivalence transformation such as that discussed in Appendix A).

The denominator operator in equation (6) has a similar representation. Denoting the
denominator by D, a little work will show that the only change from the previous continue
fraction is a single change of sign. This fact will have far-reaching consequences which will

be examined later. .

D= G-

- ! DAV D H (8)

2]+ —— D7 Hvd InVDH
27+ .. t
The problems with these representations are that they have too many fraction bars and
have matrix inverses wherever d~! appears. To get rid of these obstructions requires a
more careful treatment of continued fractions. A discussion of continued fractions is found

in Appendices A and B.

Recurrence Formulze for High Order Migration

The discussion in the appendices makes it clear that what equation (7) needs is an
equivalence transformation that generates a recurrence for numerators and denominators
which does not require any matrix inversions. Such a transformation should generate the

156- and 45-degree equations early in its sequence of approximants.

The 15-degree equation will be generated if the first right partial numerator is 'nVDt‘H,
the first left partial numerator is /, and the first partial denominator is equal to 2dADtH. Any
equivalence transformation that yields these partial numerators and denominators pre-
mu!tipliés both the first left partial numerator and the first right partial numerator by dADtH.

The result of this transformation is a new formulation for N:

!
]

DV In VD

G+
" 2dADF+dADE

nVDH

7 DBV \nvDH

e

The 45-deg?ree equation will be generated when the second partial denominator is equal
to 27, the second left partial numerator is /, and the second right partial numerator is equal
to nVD,#. The first partial numerators and denominators must, of course, remain unaltered.
Only equivalence transformations that pre-multiply the second right partial numerator by

dADtH are allowable. Applying this transformation yields
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G+

7 nVDE
2dADH+d ADHE nVDE

2dAD+dADY L Hva D

The right partial numerators can now be obtained only with a transformation that involves
post-multiplication of both the second and third left partial numerators by D[H vd~1l. The
result of this equivalence transformation is the continued fraction

!

1]
DiEVd \n R D RHg 1

G+

’i'l,VDt_H
2dADH+

I; n V.Dt—H

20+ 5

We can also clear the third right partial numerator by pre-multiplying it by dADtH. Continuing

in this manner eventually gets us the continued fraction

!

G+ 7

nVDg_H (9)
2dADH+

7 nVDH

! ~2Hy-1
21+ 5=V

27+

nVRD,RHg !

Applying the fundamental recurrence for continued fractions to equation (8) generates
a sequence of numerators A} and denominators BY. The superscript N is used to indicate

that these numerators and denominators are those of the numerator operator in equation (6).

AN =

AV = ¢

AY = nvDHAN, + 2dADPAY
AY = nvDHAY + 247

AY = nVRDRHATIAY + 24Y
Bjyl = 0
BY =1

BY = 2dADHBY
BY = nvD HBY + 2BY
BY = nVED*Hd'BY + 2B}

A similar recursion can be written for the denominator operator in equation (6). If we denote
the numerators and denominators by AP and B,;", respectively, then the only step of the
recurrences that will change is the one for calculating A‘P. The change is one of sign in one

of the coefficients

AV = —nVDHAL, + 2dADEAE
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Since the recursions for B and B are identical, it is safe to conclude that BY = BP for
k =—-1,01,23,...

Returning to equation (6), we can write the operator on the right side of the equality as
DN ~ A2 BPEY 4L

using the kth approximant for N and D. But this approximation is equal to 42 “14Y, so the

linear equation which needs to be solved is
APQ(x,z +Az,0) = ANQ(z,2,0) (10)

Another consequence of the recursion is that it yields a messy form when k& = 3.
Though BY still cancels BP, the numerators contain a matrix inverse. This leads to a linear
system with a large bandwidth and coefficients which are hard to evaluate. The upshot is

that the recurrence we have been considering is not of any use for k > 2.

The recurrences will become more familiar if substitutions are made for n, d, and G.
Only k<2 which are the useful terms in the recurrence will be considered. Dropping super-

scripts for compactness,

Ay =1
Ag = 2(Az)'pHY

Ay = #(Ax)YTVD A | + 2(-BTIADF A,
Az = (Ax)'TVD HAg + 24,

The 60-Degree Trick

By means of a trick it is possible to get a soluble system of linear equations for the
case k = 3. This is done by leaving a d™! in the first right partial humerator. A series of
equivalence transformations and a use of the commutation relation nd ™! = d 1n leads to a

continued fraction for N:

]
!
1
!

Y S —2H -1
2+ 5L —n1Rp 2y

G+ D Hvmd YypH

27+

n VDt_H

24 ADH+ nVD; ¥

27+ nVDH

The continued fraction for Nd ! VD, # is obtained by pulling a factor of d~! VD, ¥ from the
right side of this fraction.

SEP-28



Jacobs 156 Migration Recursions

!

27+ [] nVD,H
2dADH+ - nVD H
r —2H 41
2[+ 2[+ — 'n,Vth d

GDHAd + D Hvn

27+ nVDH

Applying the fundamental recurrence to this continued fraction yields a 15-degree and 45-
degree equation representation which is computationally more expensive than the represen-
tation already considered. This is not true for the equation of next higher order. This time

the recurrence for the first few AY's is

AV =1

AY = GDFAd

AY = D7HWAN, + 24%

AY = nVDHAY + 2dADEAY
AY = nvDHAY + 24)

AY = nRDRHGIAY + 24)

This recursion is inverse free up to the fourth term and is, therefore, suitable for all £ up to
and including three. There is, again, a nearly identical recursion for A,?. The only alteration

is a single sign change in the recursion for A?:
AY = =D HvnAD, + 248

The recursions for the denominators B and B need not be considered because they
cancel each other out in the linear system which now needs to be solved.

ARd VYD HQ (2 +A2,0) = AND_ VD, PO (x,2,0) (11)

Dropping superscripts for compactness and substituting for n, d, and G changes the

recurrences to the useful forms:

A,y =1
Ao = 2(A2) 'DEAAZ(I—BT)

, Ay = £D7HV(AZ) 1A +24,

' Az = (M) VD HAg+ 28z (1B TINDEA,
Ag = (Ax) VD HA 424,

The solution can be obtained without actually calculating a matrix inverse. This leads to a
scheme in which three linear systems are successively solved. Introducing an auxiliary vari-

able K, the three equations which need to be solved are
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DEMz (I BT R(z,2,0) = Q(x,z,0)
AgR(x,z+Az,w) = Aév]?(x,z,w)
Q' (z,z +Az,w) = DFAMz(/-BT)R(x,z+Az,w)

where the unknown appears on the left-hand side in all three cases. No such trick seems to

work for the case in which k& = 4.

Appendix A - Continued Fractions with M atrix Coefficients

The migration problem has generated a continued fraction with matrix operators for
coefficients. The algebra of these fractions needs to be developed a bit before we proceed
much further. A continued fraction generates a sequence of rational forms called approxi-
mants. For any continued fraction, we will need a quick algorithm for generating its
sequence of approximants, rules for changing the coefficients of the continued fraction in
such a way as to leave the sequence of approximants untouched, and an understanding of

how the properties of matrices and continued fractions interact.

Given coefficients, each an N by N matrix,

o) ol 1ol

a continued fraction can be generated. The following argument will be formal, in that the
existence of the necessary inverses and the convergence of the continued fraction will be
assumed rather than proved. With this understood, a continued fraction which we denote F

will be considered, where equal to

F=b0+ﬂ.l [1

b, +ay Ca

Cy

I
b2+(13_—b3+”'03

This continued fraction can be considered to be the resuitant of a series of non-linear
transformations Ly, where p varies from O to «. This sequence of transformations is defined

on an N by N matrix argument w and takes the form

<

to(w)=b0+'w
t,(w) = S f—; p = 1,23, -
P apbp+w el 13,

Transformations of this type can be combined via the operation of functional composition.

For example, the resultant of operating on £, with ¢, is a transformation
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totl(w) = bo Gy

+a, ————

1 b1 + w
Similarly, our continued fraction F' can be considered to be the limit of a sequence of
transformational compositions evaluated with some particular value of w. If F is well-

defined then the choice of w will not matter.

F = F(’!U) = |imt0t1t2 ooy tp('LU)
P

A limit is not useful for computations because limits usually are infinitely expensive to
compute. In migration applications it will turn out to be useful to consider intermediate terms
of the limiting sequence. The most important result in this section, to be proved by induction

in a separate section at the end, is that

-1
Fk('lU) = tUtltz oot tk(’l.U) = Bk + ’U)!lk_lBk_l] [Ak + ’LUU,k_IBk~1

Ay =1 Ay =by ag=1I

B, =0 By =1

Air = CpniO Ay + bepiog 4 k=1,23,..
Bir1 = Cpni0g 'Beg + e By k=123,

Now for some nomenclature: A4, is the nth numerator, B, is the nth denominator, the ratio
B, ' A, is the nth approximant, g, is the nth left partial numerator, ¢, is the nth right par-
tial numerator, and b,, is the nth partial denominator. The difference from the usual contin-

ued fraction theory lies in the distinction between left and right partial numerators.

‘There exist an infinite number of continued fractions with the same value and the same

series of approximants as /. Consider two sets of N by N matrices

sl bl

where the ‘dj are all invertible. One continued fraction that has the same approximants as
can be obtained by simultaneously pre-multiplying ¢, b,, and a; by an N by N matrix e,.
This pattern of ‘matrix multiplication is used because the pattern of matrices, ignoring b for
the moment, is basically a; M ~1c; where M contains all of the rest of the continued fraction.
Premultiplying ¢, by e;le, yields a; M _ e le,c, which is equivalent to a (e, M) e c,. If
we look back at the fundamental recurrence formulae for 4, and 5, then it can be seen that
this transformation leaves all approximants of the continued fraction unchanged. The result

of this transformation is the continued fraction
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bo +a, e,c,

I

e b, + e a; Co

!
b +0g ————«¢
2 3 by + - 3
A transformation on the coefficients of a continued fraction that preserves the sequence of
approximants will be called an equivalence transformation. A much more general equivalence

transformation of F’ yields the following continued fraction:

I

bo + (lel 7
elbldl + elazdz

g
esbsds + -

e 2b2d2 + ezﬂ,sds

Appendix B - The Fundamenta! Recurrence for Continued Fractions

We have defined a sequence of rational transformations £, where p varies between 0

and -« and
to('l.U) = bo + w
tp(w) = !

“ bp+'wcp

It would be desirable to find a recurrence formula for the functional compositions

totitz - - - Lp(w). Suppose the kth composition is of the form
F(w) = B, + wak‘lBk-llﬁl[Ak + wag YA
Then
Fk+1(w) = Fetpn(w) = F(ag,, [—Ck+l)
b1 +w

With a little algebra, paying close attention to the lack of commutativity among the various

matrices, this expression can be simplified to look like
-1
Freof(w) = [(Ck+lak—1BIc~l+bk+lalc_+llBk)+wak_+llBk] [(Ck+1ak»114k'l+bk+lak_+-11Ak)+wG‘k111Ak

Flc+l(w)

-1
[Bkﬂ + wak~lelB}c] [Ak+1 + walc_+11Ak]

Equating coefficients yields a recurrence for both the A, ’s and 5, ’s in terms of the partial

numerators and denominators:
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Acvy = Crrg Ay + brah A

— -1 —1
Bievi = e A + b1 B

The necessary initializations for this recurrence need to be found. To get the starting

points, consider the casesinwhichk =0Oandk = 1.
to('!.U) = bo +w = [[ + O’LU]_l [bg + 1’(1)]

ti(w) = (biait+wa) Ub,ai bg+e,+walbyg)
Equating coefficients again, we find that for non-zero ag

A_lzllo AQ:bQ
By = 1 Bg =1

will provide a suitable recurrence initialization. For convenience, we set ag and therefore

A_; equal to identity operators.

From the fundamental recurrence it can be seen that pre-multiplying b,,; and ¢, ,; by
the same non-singular matrix will not change the approximants of the continued fraction.
The same can be said for post-multiplication of ¢;,; and g; and for post-multiplication of
by and ai ... These facts were used implicitly in Appendix A in the discussion of

equivalence transformations.
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