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Velocity Analysis By Snell Trace Deformation And Stolt
Imaging In Snell Midpoint Coordinates

Alfonso Gonezdlez-Serrano

Abstract

In a stratified earth Snell Midpoint Coordinates are a suitable frame to put seismic data
before velocity estimation. Main advantages are that we can image the data and estimate
velocity exactly. Imaging is costly because it requires a phase shift method to handie a
v(z). However, if we do a Hyperbolic Stretch with some 7(2), the data field will be quasi-
hyperbolic, imaging could then be done using an Stolt algorithm and reduce its cost. The pro-
cess can be applied iteratively to converge to the correct velocity function. in practice two

or three iterations should suffice.

1. Velocity Analysis By Snell Trace Deformation And Stolt Imaging In Snell M idpoint Coordi-
nates,

In previous SEP-reports, two new processes have been introduced separately for the
problem of welocity estimation in an stratified earth. The first process was to transform
seismic data into Retarded Snell Midpoint Coordinates, and read velocity information directly
from the data (Claerbout, 1978; SEP-15, p. 57-71). The second process was to deform a
CMP-gather with some first order estimation of the velocity ¥ (2) into hyperbolas, using the
definitions of Snell traces and Radial traces (Gonzdlez and Claerbout, 1981; SEP-286,
p.137-1566. Ottolini, 1981; SEP-26, p. 83-94). In this paper we want to explore the pos-
sibility of merging the two process in a velocity estimation routine. Our goal is to improve the

resolution of the velocity function for early primary arrivals in a C}#/FP~gather.

Several advantages result when we merge the two processes. By doing a hyperbolic
stretch in the data, the mapping equations do three functions at once. First, all postcritical

reflections and refraction data are muted smoothly by mapping them to infinity, thus
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avoiding the need of muting the data before the deformation. Second, it is easy to resample
the data more densely (interpolation) while doing the stretch, and have better resolution for
the precritical arrivals of the original gather, in particular for early arrivals. And third, the
new space is hyperbolic. When we started imaging the data in Retarded Snell Midpoint Coor-
dinates we wanted to handle stratified velocities, therefore we did the imaging using a
phase-shift algorithm. This is an expensive process. However, if we preprocess the data to
an hyperbolic space, an Stolt-type algorithm may be used instead, with a considerable sav-

ings In computations.

2, Retarded Snell M idpoint Coordinates.

The Retarded Snell Midpoint Coordinates were originally introduced by Claerbout
(1978, SEP-15, p. 81-87), where advantages of processing seismic data in this coordinate
frame were discussed, in particular the problem of accurate velocity estimation in an strati-
fied earth. This coordinate system avoids the need to do small angle approximations in the
expressions for velocity estimation. Besides, all transformations performed on the data are

linear.

We can formulate the wave equation in Retarded Snell Midpoint Coordinates, and find
wavefield extrapolators that enable us to image the data before velocity estimation. This
was done using a phase-shift algorithm in the fk-domain (Gonzdlez and Claerbout, 1979,
SEP-16, p. 181-204). In this article we explore the possibility of doing the imaging with an
Stolt-type algorithm (Stolt, 1978). Our aim is to reduce the cost of the process while still

getting the advantage of working with an imaged wavefield to estimate velocity.

Originally, the Snell Midpoint coordinate system was defined as a refarded frame:

. _ _ . cosd
' = t-p(g S)+2‘[’U(E) d§
Y - %
h = 1;—s+{tanﬂd§
_ * cosy
T = 2.0f 2 (0) d¢

where (s,g,z,t) = (shot,geophone,depth,travel-time) are the recording coordinates, and
pv = sind.
In this paper, to formulate the dispersion relation in the fk-domain for an Stolt algorithm,

we need to redefine the coordinate system as a non —retarded one. The definitions
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become:
t = t—-plg —=s)
_ g t+s
vy - 2
h = 9—2-—+ ftam& df
- cosd
= d
T 2{ 2 (0 £

In this system the imaging conditions become s = g, and t' = 0.

The dispersion relation in this non-retarded Snell midpoint frame is:

ke o __ v o |y _zeE e [ 1)
& 1 -p%? T — pPu?
k
H =2

Transformation of field data into Snell coordinates requires two steps: 1. Sorting the

data to CMP-gathers. 2. At z = O we obtain a linear movout correction:

1

t2=0 = t —plg —5)

This correction needs to be applied to the CM/-gathers.

3. Stolt Imaging In Snhell Coordinates.

To formulate the Stolt-imaging of the data from (k,t') space to (h,7) space, we need to

change variables in the following integral:

r

badiiad 'i.flc,rd'r & h
P(h,7,t'=0) = ff Pk, 7=0,0)e ° e Mdk,dow (2
to resemble a 2D-fft of the form
Pr,7) = [ [ Pliykre "5 e, gr, (3)

—t0 —0

Using the dispersion relation (1), we can solve for  to get

172

B Rk, o lez 4 kjZuR ovikp k., pPuti?
2(1 — p*u®) T a1 —pPR®) 1 —pPR 201 — pPuR)?

(4)
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Next, assuming constant velocity, and changing variables in (2) from w —> k, we

obtain
P(h,7) = [ [ Pllne,=k(kp,0)) ¢ 00 70 1 L8 4 g (5)
—50 00 T
where the obliquity factor is given by
2k
k‘r + __E_'u_h.__
do _ 2(1 ~ p*?) (6)
dk.r B kz,vz zk k 2'!)4]62 172
k2 4 3 puTEp K + p h
Ta(1 —p™WR) 1 —p%? 201 —pPuR)?

4, Snell Trace Deformation.

To take advantage of the Stolt algorithm when the velocity structure is stratified, we
need to deform the data into hyperbolas. The process of transforming seismic data from
Snell troce space to FRadial trace space has the equivalent effect of mapping non-
hyperbolic seismic arrivals into hyperbolic arrivals, (Gonzdlez and Claerbout, 1981; SEP-26,

p.181-204). This process consists of two steps:
i) Transformation to (p,2) space.

For the first transformation we need to take the seismic CHMF gather and determine a
velocity function #(z). This velocity function does not need to be extremely accurate, but
should include the most predictable changes in the velocity function, such as the sea-floor
sediment interface for marine data. Using this velocity function we use ray tracing equa-

tions to transform the data into (p,2) coordinates.

2 _ 1
2 1
¢ l f v(£) 7z €
0 1 —pPu(§)?
= (7)
I R
0 1 —p2u(§)?

where £ is two-way traveltime, A is half-offset, v is velocity, and p is the Snell parameter.

ii) Transformation to (f:,; ) space.
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The second transformation consists of taking the data from the (p,z) space into new
CMP (}:,;) coordinates. This second transformation is done at a constant velocity ¥. For

constant velocity we can invert the ray-equations (7) to get

h_
vRt
= (8)
2z 1—[173?2 - ﬁzlw
2

We stress that for computation the intermediate step is not necessary. Since the ray
equations are invertible for the second transformation, we may substitute directly equation

(8) into (7) to get the result in a single pass.

5. Velocity Estimation,

A relationship to estimate a velocity function using the LMO (linearMoveowut) method
is found substituting the imaging conditions s =g and {' = 0 into the definition of Snell

coordinates, to get:

€¢)]

Figure(1) illustrates the process we propose to estimate velocity. It consists of imaging
plus stretching of the data. The first step is to get an approximate velocity function o (z).
In particular we are interested to resolve velocity for eatly arrivals close to the sea-floor.
We can turn to conventional hyperbolic velocity estimation to get the first velocity function,
but this process requires muting of refraction arrivals to get resolution for early arrivals, and
then we get the problem of end effects. Instead we found the first estimate 7(z) using the
LMO method. Additional advantages are that the LM 0O method is less expensive than con-

ventional hyperbolic scanning, and that it is exact.

Since our process is iterative, we need to write the velocity at a given depth as a
series expansion about the ¥ we are using in the hyperbolic stretch. Because we are going

to read velocities in imaged (h,T) space, it can be done as follows:

Defining as m the slope in imaged coordinates (h,7)

m = 87
~ dh
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FIG. 2. Common midpoint marine gather. nh

gain applied.
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FiG. 3. Window of the data from figure 2. The data has been square-root gained. We will
concentrate in the first half second of data to estimate velocity. The reference events are
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FIG. 4. Conventional velocity estimation for the gather of figure 3. Note in particular the
poor resolution for the first .35 s of data. We did nof use this panel to estimate 7 (z).

we can write an expansion for the velocity as

82vu
dm?

ov

om

-

v = v+

dm +
v=t

] dm? + - - (10)
v =0

We are making the expansion about ¥. This is the inverse mapping velocity in the
hyperbolic stretch, and is also the imaging velocity. We are interested in measuring depar-

tures from this reference velocity to correct ¥(z).
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We can use equation(9) to find dv/ dm

v _ k4l (
v = - 11)
(N o]

From this equation we can find the desired du correction. Keeping the linear term only

dm = —LZ dm (12)

tuyy = T _a=[ﬁi
v=7

v=0 v=t am

In figure(2) we plot the marine seismic gather we will be using to test the method. Fig-
ure(3) shows the first 2 sec of data, where an square —root gain (Claerbout, 1981; SFP-
26, p. 75-78) has been applied. In this figure we show the reference events we will use to
test our method. For reference we did a conventional hyperbolic velocity estimation to this
data in figure(4). Note in particular the poor resolution for the first i1/2 second because we
did not mute the data.

The next step is to transform the data into Snell midpoint coordinates. At the sea-
surface z = 0 we only need to apply a linear moveout correction to achieve this. Figure(5)
shows the data after LMO. In this correction we need to decide what value of the ray
parameter p to use. This should be done remembering that the smallest vaiue of p is a func-
tion of the near-offset in the gather. If the first trace has a large offset, a choice of too
small p will place the stationary point of the hyperbolas in the zone where we have no data.
On the other hand, a too large p value will restrict the range of velocities we can estimate,
and will enhance the asymmetry of the skewed-hyperbolas, introducing a bias when we esti-
mate velocity. In practice we probably want to divide the data into several regions, then we

can use different p in each region according to some rule, for instance
p RS 0‘5/'Umn

In figure(5) we used p = 1/ 3333 s/ m for the first ;1,2 sec of data.

Figure(B) is a reference grid to estimate velocity generated using equation(9). We can
use it directly on figure(5) to get the first velocity function. However, we can image the

data at this point using equation(5).

To test our process we are mostly interested in early arrivals, a choice of water velo-
city ® 1600 m /s for the first imaging of the data is reasonable. We need to avoid

artifacts from end effects, and errors because we are using a constant velocity algorithm in
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FIG. 5. The data after Linear Moveout Correction. The ray parameter is p = 1/3333s/m.
We could estimate velocity directly in this panel identifying coordinates of hyperbola-tops.
However we prefer to image the data first.

a variable velocity wavefield. For these reasons we may restrict ourseives to a range of
15° about the stationary point of the skewed-hyperbolas to image the data. This is done
easily remembering that by definition

’Ch’l}

H = = siny’ (13)
2w

where ¥’ is measured about the Snell trajectory associated with the ray parameter p used

in the LMO-correction. About the stationary point, the data should be less sensitive to
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FIG. 6. Reference grid to estimate velocity. The slope about the origin gives the
RMS wvelocity, the slope between two consecutive primary events gives the
Interval velocity. This grid has the same dimensions as figs (5) and (7), the ray parameter
isp=1/3383 s/m.

velocity compared with wide offsets. Figure(7) shows the imaged data, as well as the Snell
trajectory for the background velocity 4. The obliquity function given by equation(6) was

not implemented because it becomes important at wide angles.

A useful feature of imaging the data in Snell Coordinates is the separation of events
with angle. Multiple reflections stay aligned below their associated primaries (at water velo-
city slope) becoming easy to discriminate. Refractions remain at high angles, without strong

interference with primaries. This decoupling is an advantage in estimating velocity.
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FIG. 7. The data after imaging using an Stolt algorithm. For this step we did not know the
velocity function, thus we used water velocity v = 1500 m./ s for the extrapolation. Also
there is no need to do the imaging to wide angles. We used a window of 159% measured about
the reference Snell wave (characterized by its ray-parameter p). The line drawn is for water
velocity, the tops of the hyperboloids are right-shifted because events have higher velocity
than water.

The next step is to use @¥(z) in our equations for the hyperbolic stretch. For early
arrivals, and for the particular data set we are using, with prescence of strong refractions,
the critical angle is reached within a few offsets. This is a severe drawback in conventional
velocity estimation. However we can use our hyperbolic stretch to interpolate the data more
densely, while at the same time muting-out refractions by sending them to infinity. In fig-

ure(8) we display the data after deformation (2 = 1700 m./s), where we resampled the
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FIG. 8. This figure shows the mapping to Hyperbolic stretch for the data of figure (3). We
are interested in estimating velocity for only the first half second of data, therefore in the
mapping we resampled the gather to duplicate the number of traces di,,, = 12.5 m. Note
in particular the location of the first missing trace in the gather. The velocity function 7 (z)
is plotted in figure (13).

gather to duplicate the density of precritical data. dhy,g = 25. m - dh,, = 12.5 m. Fig-
ure(9) is a conventional velocity estimation with this stretched data. Compare the resolution
of the first 0.5 sec with that in figure(4).

The last step of the process is to find the correction dv to our initial 7(z). We use
again an Stolt imaging of the data, but now we can go a little further than 15° because the

data has a first order correction to hyperbolicity. For this imaging we must be careful to
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FIG. 8. Conventional velocity estimation for the stretched data. The events for the first half
second of data are aligned along the background velocity used in the Stolt imaging and the
Hyperbolic stretch. ¥ = 1700 m/s. Compare the resolution for the first half second of
data with the non-stretched velocity analysis of figure 4. We did not use this panel to esti-
mate velocity corrections.

choose the same velocity v that was employed in the hyperbolic stretch. The representa-
tion of the velocity function is a series expansion about this velocity. In figure(10) we
display the stretched data with a LMO-correction (p = 1/3333 m /s ). Figure(11) is the
reference grid for velocity estimation with the new offset space dh = 12.5m. Figure(12) is
the image of the data. Note all reference events are now aligned along the slope

corresponding to the background velocity. Figure (13) shows the final velocity function, it
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FIG. 10. The stretched data of figure (8) with Linear Moveout correction.
p =1/33833 s5/m.

took 3 iterations to align the reference events. With experience doing velocity corrections

we can reduce the number of iterations. Velocity corrections were done using equation(12).
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FIG. 11. Reference grid to estimate the velocity corrections in the stretched data, with the
new range of offsets.p = 1/3333 s/m.
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FIG. 12. Image for the stretched data. We used the velocity function plotted in figure 13.
Reference events are shown in figure (3). The image was done with background velocity
¥ = 1700 m/s, the window was 30° about the reference Snell parameter
p =1/3383 s/ m. Note how we have aligned all reference events along the background
velocity. Departures from the Radial trace with ray parameter p give the desired velocity
corrections. 1t took 3 iterations to get this image.
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FIG. 13. Velocity function for the first half second of data obtained using the Hyperbolic
stretch plus Stolt imaging. This velocity functions was obtained after 3 iterations.
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