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The Gaussian Beam in Energy Variables

Jon F. Claerboul

Is it hard to do a good job of computing Gaussian beams? It seems inevitable that
approximations get made, both in theory and in numerical analysis. It is best when small
errors don’t grow, bad when errors grow rapidly to disasterous proportions, and worse when
they grow more slowly and remain unrecognized. We have a lot of experience with the sta-
bility of wave extrapolation PDE’s but none with the ODE’s of ray tracing. With PDE’s we
have learned that the way to "bullet proof" the calculations is to use energy variables
instead of the physical pressure variable. With the idea that energy variables might be
helpful in the calculation of Gaussian beams, the Gaussian beam problem will be reformulated

in terms of energy variables.

Given the differential equation
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one may easily show that
L gy = (R +RI¥ < 0 2)

We will interpret ¥ as an energy flux variable. We demand that £ + E° be non-negative
definate. Then (2) may be interpreted as a demand that the energy carried by the beam
must decrease along the beam. In PDE work we sometimes regard ¥ as a column vector,
with elements of the vector denoting successive locations along the z-axis. Other times
we regard ¥ as a function of the Fourier variable k.. In either case ¥'V¥ is regarded as
an integral over the r-axis. For explicit functions of z as with Gaussian beams, equation

(2) has an implied integration over z .

The wave flux extrapolation equation is
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With the usual 15 degree approximation we get

d _1__1)6211]1

1
7t ] [1 2 Tio 52® —io | Vo T @

Replacing —iw by —iw + & one sees that (4) is of the required disipative form (2).
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Now we recall the Gaussian beam trial solution
1  dz 7
Wzx,z) = Vgexp[ —iwt — E—sz + iw{m— ‘o[a(Z) dz ] (8)

and take some partial derivatives

¥, = (;—sz),, ¥ = (Mz)¥ 9

Voo = [(Mz)? + (Mz), ]V = (MPzR+ M) ¥ (10)
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¥, = [“"{U(Z) —‘Ofa,(z)dz — M(2)z?], ¥ (11)

¥, = [v"‘(‘;’) —alz) - z2M,1¥ (12)

We get a happy feeling when we note that we don’t need ¥,. and all its attendent
complications and approximations. This is because we don’t plan to substitute into the
scalar wave equation. We will substitute into the 15-degree flux extrapolation equation

(7). First the z -derivatives.

(A2 o —z2) ¥ = gy _ji/gz [(\/J)wqf F2(NT), Y, + \/a\pn] (13)
(ca —z2H) ¥ = L2 (Vs ¥ + 2007, 4, + Vo | (14)
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Now for the =z -derivatives. We plan a power series expansion for everything, keeping
all terms up to xz®. We will have a lens like medium where the beam stays columnated along

the =z-axis.
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VU = bg + bax? (15a)
(Vv); = 2bz (15b)
(VU ), = 20, (15¢)

v =bd + 2bgbax® (15d)

Completing the substitution of (9), (10), and (15) into (14)
—iw2(—a — z?M,) = (bo+baz®)[2bs + Abyx? M + (bot+box®) (M +MPx?)] (16)
We find for the coefficient of z® that
2iwa = 2bgbg + bEM (17)
We find for the coefficient of z? that

2iw %— = 2b% + 6bobM+biM? (18)

In order to make things a bit more readable, we’ll return to the definitions

v=>b¢ vy, = 4bgby = 16b% (19)
We have finally deduced that a(z) and M{z) must satisfy
. UW
2ipwa = T+’UM (20)
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| guess the linear equations are easier for numerical analysis than the Ricatti equations
because they are reversible. Let us represent the Ricatti equation (21) in matrix form.

Recall the equivalence of

2
LE: b +((l—d)P——C&2— (22)
dz q q g

) Bl (23)

Thus (21) is equivalent to (24)
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Now is the time for an erudite discussion of equation (24) explaining why it is more stable
and computable than the form Cerveny uses. At the moment, | don‘t even know if it is as
good ! This deserves further analysis. Perhaps | must note that the physics falls apart if

the velocity ever becomes negative inside the beam, that is, if

Ve > — |M]
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