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The Simplest Gaussian Beam

Jon F. Claerbout

The finiteness of the amplitude of any Gaussian beam has important implications for ray
tracing programs. In traditional ray tracing the energy density in a wave is inverse to the
separation of nearby rays. During focusing, rays cross and incorrectly predict infinite
energy density. Phase shift at the focus is not modeled. On the other hand, Gaussian
beams propagate smoothly and correctly through a focus. Vlastislav Cerveny has shown
that the computation of Gaussian beams is no more difficult than ray tracing. In fact it is
even easier because it is much more stable. He has convincingly argued that ray amplitude
and phase calculations should be done by Gaussian beams as an improvement to traditional
methods. This paper is written to introduce students to the the Gaussian beam concept
without demanding additional skills in curvilinear coordinates as are also required for ray

tracing.

A mathematical expression for vertically downgoing plane waves is
P(z,z) = Pq exp(—iwt+i—3—z)

It will be little more difficult to let the velocity vary with z. Clutter can be avoided by intro-
ducing the definition levocity = A(2) = 1/v(z).

P(z,2) = Pgexp[—iwt+iw [Mz) dz ] (1)
¢}

Let us change this expression so that the amplitude drops off slowly as a Gaussian function

of = .
y 1
P(z,z) = Pyexp(—iwt +1',a>f)\(z) dz ——-2-—-Mx2) (2)
0

If M is very small then the wavefield becomes very similar to a plane wave. Since (2) is
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nearly equal to a plane wave it should nearly satisfy the wave equation. But there are
several discrepancies, and these are the things of interest. First of all, waves always even-
tually spread out so we should indicate that the beam width 1/~ }7 is a function of z and
seek to find the function. We should expect that M(z) will not ohly have a positive real
part but that it will develope an imaginary part representing phase curvature, i.e. on a very
large scale our broad wave looks like a directional point source. As the beam spreads out,
the amplitude should also decrease and it may develope a phase shift. A convenient
expression of these phenomena is given by some complex, non-zero af(z) in the Gaussian

beam trial solution
1 y ®
P(z,2) = Pyexp[ —iwt — —2—sz + iwf)\(z) dz — fa(z) dz ] (3)
0 )

Marcuse (p.236) asserts that a function such as (3) will not exactly satisfy the wave
equation, but, with suitably determined #(z) and a(z) it does exactly satisfy the para-
bolic wave equation. We will find the equations which determine #M(z) and a(z). We will

need to assert that the beam is narrow, that is

oNz) > z° ﬁil (all 2) (A1)
0z
wi(z) > |a(2)] (all 2) (A2)

The stronger the inequality the narrower is the angular bandwidth of the beam. After we find
determining equations for #M(z) and a(z) we wil want to study their behavior to see
whether the assumptions (A1) and (A2) are satisfied for all z as well as initially. Let us

form the derivatives of (3) which will be required for substitution into the wave equation.

P, = (;—Mza)z P = (Mz) P

P, = [(Mx)? + (Mx), 1P = (MPzR?+M) P (4)
P = [iwfN2) dz — [a(z) dz — M(2)z?], P
0 0
P, = [iwMz) —a(2) —2?M,] P
P = [GoNz) —al2) —2?M,)? + (ioMz) —alz) —2°M,), 1P (5

Before inserting into the wave equation we discuss some simplifications to (5). On the left
we simplify by neglect of the squares of the small quantities in (A1) and (A2). On the right

we make a paraxial type approximation, that is, we drop the @, and the M,, terms to
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eliminate the backward going wave. Justification is by the asserted smallness of the pertur-

bation from a plane wave. Thus

P, = [N — 2i0A (@ +2% M) + 1N 1 P (6)
inserting (4) and (6) into the Helmholtz wave equation P +P,, = —Pw?A\? we get
_ _agm . o dM .
0 = z*M* + M —2iwA(at+z E—)+zw)\z (7)

There are two unknowns, M(z) and a(z), and only one equation (7). But the equa-
tion should be satisfied for all possible values of z so it is really an infinite number of equa-
tions. Here is where we are saved by our judicious choice of a trial solution. We don’t need
toask M or o to have x—dependence because we can get (7) to be satisfied for all =
if we note that (7) is a two-coefficient polynomial in z. We get the coefficient of z? to
vanish by our choice of M(z) and the coefficient of z® to vanish by our choice of a(z).
Thus

dM _ M?
dz = 2iwNz) (&
2n(z)a(z) = —.1——M(z) + A, (9)
(AN

Next we should show that the solutions of (8) and (9) are well behaved. That is, we
would like to be able to assure that our initial assumptions (A1) and (A2) remain valid for all
z. Furthermore we will probably want to be assured that the real parts of }(z) and

a{z) are positive.

Ricatti Equation

An important goal is to find an expression for the total energy flux down the beam and
its z derivative. Physically one expects the energy carried by the beam to be invarient of
the location along the beam. Mathematically we don’t know if this will be strictly the case,
since we have made some assumptions, (A1) and (A2). As a practical matter, we could be in
deep trouble if the energy in the beam grows. | haven’t yet achieved this goal, but let us

review some of the traditional wisdom about energy flux.

Equation (8) is the non-linear Ricatti equation. Such equations are often associated
with impedances and thus have positive real parts, so we should be in luck. The main thing

about Ricatti equations is that given

SEP-28



Claerbout 96 Simplest Goussian Beam

= [gg] {g] (10)

then by direct substitution

dp _ 1 _pP_

dz g q (ap +bg) e (cp +dg)
d p _ p_.p%
—_ = b+ (a-d)~—-c¢ 5 11
dz g q q

Associate M with p/g. Comparing (11) to (8) we see the applicable definition of b and

c. Apparently we can take a=d=0. Cerveny introduces (10) and explains that it has a
formal similarity to the ray tracing equations. At the moment we are more interested in sta-
bility of our perturbation analysis.

In many problems Re pq’ is the energy flux. | don’t know if it is that here since | am
familiar with equations which control the wavefield itself. This is the first time | have seen
an equation controling the logarithm of a wave. Very interesting ! Anyway, it is easy to
establish positivity by

L4

Re B - Repg (12)
q 99
By direct substitution we have
_d_ . _ dg‘ é& . v e » v »
dzpq =pr +d2q =c ' p'p+bg’g+(d+adpg (13)

Since a=b=d=0 and ¢ = 1/ —2iw is purely imaginary, then Re pq' is a constant func-

tionof z .

Lens Like M edia

The ray would bend if we were to include a first lateral derivative of the velocity. A
bending ray requires more difficult analytical procedures, so we’ll ignore it for now. An
interesting case is when the first derivative vanishes, but the second derivative does not.
In this case the beam can focus. This is a difficult case for traditional ray theory, but it is
an ideal case for Gaussian beams. Take the velocity to be given by
2

Z s (14)

Mz,2) = A+ >
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Mz,z)® = AP+zPA, (15)

Looking back to the derivation of equation (7) we see that the velocity of the medium enters
the Helmholtz equation only from the term on the right hand side. Including the z? term in
(15) just gives an additional (—iw)*’AN;;z° term on the right hand side of (7). This gives
b = —iwAN; /2 tobe added onto (8). Results may be summarized by

—iw
2 b - ° ZMWF’] (16)
dz gl ~ 1 0 g
—iw2

Returning to equation (13) we see that 8,(pg"*) is purely imaginary in lens-like media
as well as homogeneous media. Thus Re M = Re {p/ g) can change its value, but never its
sign. That is lucky because the answer would be entirely meaningless if the sigh changed.

We may also want to do the numerical analysis to ensure the positivity.

It seems to me that the causality properties are messed up because look what happens
to (13) when —icw is replaced by —iw + &. The sign of the real part cannot be guaranteed

because the sign of A_, is arbitrary. That seems to be just what lenses do.
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