The Wave Equation in Ray-Centered Coordinates

Mathew Yedlin

The previous three lectures provide a basis for this lecture. It is, of course, now no problem to put our wave equation in the ray-centered coordinate system. The general form of the Laplacian is

$$\nabla^2 u = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial x_1} \left[\frac{h_2 h_3}{h_1} \frac{\partial u}{\partial x_1} \right] + \frac{\partial}{\partial x_2} \left[\frac{h_1 h_3}{h_2} \frac{\partial u}{\partial x_2} \right] + \frac{\partial}{\partial x_3} \left[\frac{h_1 h_2}{h_3} \frac{\partial u}{\partial x_3} \right] \right\} (4-1)$$

In our case $h_1=h$, $h_2=1$, and $h_3=1$. Also x_1 is identified with S, x_2 with q_1 and x_3 with q_2 . Use of (4-1) in the acoustic equation results in

$$\frac{1}{h} \left\{ \frac{\partial}{\partial S} \left[\frac{1}{h} \frac{\partial u}{\partial S} \right] + \frac{\partial}{\partial q_1} \left[h \frac{\partial u}{\partial q_1} \right] + \frac{\partial}{\partial q_2} \left[h \frac{\partial u}{\partial q_2} \right] \right\} = \frac{1}{V^2} \frac{\partial^2 u}{\partial t^2}$$
 (4-2)

Since we eventually will be concerned with the parabolic approximation to (4-2), we would first like to remove the traveling wave contribution to (4-2). Also, we will explicitly introduce the frequency ω , which will serve as a large parameter. This will allow us to concentrate on rays near the central ray under consideration. For that ray, the traveling wave solution is simply given by

$$\exp\left\{-i\omega\left[t-\int_{S_o}^S\frac{dS}{V_o}\right]\right\} \tag{4-3}$$

where $V_o = V_o(S)$ only and S_o denotes the starting point of our ray. The new variable to be used in (4-2) will be defined as

$$u[S, q_1, q_2, t] = \exp\left\{-i\omega\left[t - \int_{S_o}^S \frac{dS}{V_o}\right]\right\} U(S, q_1, q_2)$$
 (4-4)

Yedlin

Inserting (4-4) into (4-2) results in

$$\omega^{2}h\left[\frac{1}{V^{2}}-\frac{1}{h^{2}V_{o}^{2}}\right]U+\omega\left[\frac{-i}{hV_{o}^{2}}\frac{\partial V_{o}}{\partial S}U+\frac{2i}{hV_{o}}\frac{\partial U}{\partial S}+\frac{\partial}{\partial S}\left[\frac{1}{h}\right]\frac{i}{V_{o}}U\right]$$

$$+\frac{\partial h}{\partial q_{1}}\frac{\partial U}{\partial q_{1}}+\frac{\partial h}{\partial q_{2}}\frac{\partial U}{\partial q_{2}}+h\left[\frac{\partial^{2} U}{\partial q_{1}^{2}}+\frac{\partial^{2} U}{\partial q_{2}^{2}}\right]+\frac{\partial}{\partial S}\left[\frac{1}{h}\right]\frac{\partial U}{\partial S}+\frac{1}{h}\frac{\partial^{2} U}{\partial S^{2}}=0 \quad (4-5)$$

Now in order to utilize ω as a large parameter in (4-5), we want to do a coordinate scaling. This means that we are making a paraxial approximation along the central ray. From experience, we know that in Cartesian coordinates, the simplest form of the parabolic equation is

$$\frac{\partial^2 U}{\partial Z \partial t} = \frac{V}{2} \frac{\partial^2 U}{\partial X^2}$$
 (4-6)

If we Fourier transform (4-6) over time, then the following scaling is suggested:

$$X' = x\sqrt{\omega}$$

For such a scaling, the X' coordinate behaves like the Z coordinate. Application of such a scaling to (4-5) results in

$$\omega^{2}h\left[\frac{1}{V^{2}} - \frac{1}{h^{2}V_{o}^{2}}\right]U + \omega\left[\frac{-i}{hV_{o}^{2}}\frac{\partial V_{o}}{\partial S}U + \frac{2i}{hV_{o}}\frac{\partial U}{\partial S} + \frac{\partial}{\partial S}\left[\frac{1}{h}\right]\frac{i}{V_{o}}U + h\frac{\partial^{2}U}{\partial\nu_{1}^{2}} + h\frac{\partial^{2}U}{\partial\nu_{2}^{2}}\right] + \omega\left[\frac{\partial h}{\partial\nu_{1}}\frac{\partial U}{\partial\nu_{1}} + \frac{\partial h}{\partial\nu_{2}}\frac{\partial U}{\partial\nu_{2}}\right] + \frac{\partial}{\partial S}\left[\frac{1}{h}\right]\frac{\partial U}{\partial S} + \frac{1}{h}\frac{\partial^{2}U}{\partial S^{2}} = 0$$
(4-7)

where $\nu_1 = \sqrt{\omega}q_1$ and $\nu_2 = \sqrt{\omega}q_2$

Now we would like to solve (4-7) as ω tends to infinity, a ray-type approximation. We will only keep terms whose coefficients vary as ω^{β} , where $\beta \ge 1$. Also, we shall use the following approximations:

- 1) *h*≈1;
- 2) $\frac{\partial}{\partial s}(\frac{1}{h}) = 0;$
- 3) A Taylor's expansion of the first coefficient of U in (4-7).

Only the last approximation is somewhat involved, and it rests on the fact that

$$h = 1 + \frac{1}{V} \left[\frac{\partial V}{\partial q_1} q_1 + \frac{\partial V}{\partial q_2} q_2 \right]$$
 (4-8)

where the derivatives are evaluated along the central ray. For h along the central ray, we replace V, which depends on all three coordinates, S, q_1 and q_2 by V_o which depends

Yedlin

only on S . Then,

$$hV_o = V_o + \frac{\partial V}{\partial q_1} q_1 + \frac{\partial V}{\partial q_2} q_2$$
 (4-9)

Similarly, we can express the velocity $\,V\,$ as a Taylor's expansion about the central ray as follows.

$$V(S, q_1, q_2) = V_o + \frac{\partial V}{\partial q_1} q_1 + \frac{\partial V}{\partial q_2} q_2 + \frac{1}{2} \mathbf{q}^T \mathbf{V} \mathbf{q} = h V_o + \frac{1}{2} \mathbf{q}^T \mathbf{V} \mathbf{q}$$
 (4-10)

where

$$\mathbf{q} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \quad \text{and} \quad \mathbf{V} = \begin{bmatrix} \frac{\partial^2 V}{\partial q_1^2} & \frac{\partial^2 V}{\partial q_1 \partial q_2} \\ \frac{\partial^2 V}{\partial q_2 \partial q_1} & \frac{\partial^2 V}{\partial q_2^2} \end{bmatrix}$$

Use of (4-9) and (4-10) and replacement of q_1 and q_2 by ν_1 and ν_2 yields (after some algebra) that

$$\omega^2 h \left[\frac{1}{V^2} - \frac{1}{h^2 V_o^2} \right] \approx -\frac{\omega}{h^2 V_o^3} \nu^T \mathbf{V} \nu$$
 (4-11)

Inserting (4-11) and the foregoing approximations for h and its derivatives into (4-7), and then dropping the $\partial^2/\partial S^2$ term results in the following parabolic equation

$$\frac{2i}{V_o} \frac{\partial U}{\partial S} + \frac{\partial^2 U}{\partial \nu_1^2} + \frac{\partial^2 U}{\partial \nu_2^2} - \left[\frac{\nu^T \mathbf{V} \nu}{V_o^3} + \frac{i}{V_o^2} \frac{\partial V_o}{\partial S} \right] U = \mathbf{0}$$
 (4-12)

where ν is a column vector with first component ν_1 and second component ν_2 .

The complete solution to our wave equation in the ray centered coordinate system, with the parabolic approximation, is given by

$$u(S, q_1, q_2 t) = \exp \left[-i\omega \left[t - \int_{S_o}^S \frac{dS}{V_o}\right]\right] U(S, \nu_1, \nu_2)$$

where U is a solution of (4-12). It is clear, from the foregoing discussion, that the ray-centered coordinate system is simple, elegant and simplifies much algebra. This coordinate system is also a very powerful tool for theoretical investigations, such as the derivation of the parabolic equation in a three dimensional inhomogeneous elastic medium.

Yedlin

ACKNOWLEDGMENTS

The previous four lectures are based on the work of V. Červený, F. Hron, M.M. Popov and I. Pšenčik. In particular, this author is grateful for the preprint "Expansion of a Plane Wave into Gaussian Beams".

REFERENCE

- Popov, M.M. and Pšenčik, I., Ray Amplitudes in Inhomogeneous Media with Curved Interfaces. Geofysikalni Sbornik XXIV (1976).
- Červený, V. and Hron, F., The Ray Series Method and Dynamic Ray Tracing System for Three-Dimensional Inhomogeneous Media. Bulletin Seismological Society of America, Feb. 1980.
- Červený, V., Expansion of a Plane Wave into Gaussian Beams. Studia Geoph. et Geod., in press.