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The Wave Equation in Ray-Centered Coordinates

Mathew Yedlin

The previous three lectures provide a basis for this lecture. It is, of course, now no

problem to put our wave equation in the ray-centered coordinate system. The general form
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and z3 with g, . Use of (4-1) in the acoustic equation results in
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Since we eventually will be concerned with the parabolic approximation to (4-2), we
would first like to remove the traveling wave contribution to (4-2). Also, we will explicitly
introduce the frequency « , which will serve as a large parameter. This will allow us to con-
centrate on rays near the central ray under consideration. For that ray, the traveling wave

solution is simply given by
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where ¥V, = V,(S) only and S, denotes the starting point of our ray. The new variable
to be used in (4-2) will be defined as
% ds
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Inserting (4-4) into (4-2) results in
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Now in order to utilize ¢ as a large parameter in (4-56), we want to do a coordinate scaling.
This means that we are making a paraxial approximation along the central ray. From experi-

ence, we know that in Cartesian coordinates, the simplest form of the parabolic equation is
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If we Fourier transform (4-6) over time, then the following scaling is suggested:
X = zVow

For such a scaling, the X° coordinate behaves like the Z coordinate. Application of such

a scaling to (4-5) results in
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where v; = Vg, and v, = Vg,

Now we would like to solve (4-7) as w tends to infinity, a ray-type approximation. We
will only keep terms whose coefficients vary as «f, where $>1. Also, we shall use the

following approximations:
1) hW~1;
0 1, _ A
2) Py ( h) = 0;
3) A Taylor's expansion of the first coefficient of [/ in (4-7).

Only the last approximation is somewhat involved, and it rests on the fact that
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where the derivatives are evaluated along the central ray. For A along the central ray, we

replace V, which depends on all three coordinates, S, g, and g, by ¥V, which depends
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only on S . Then,
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Similarly, we can express the velocity V as a Taylor’'s expansion about the central ray as

follows.
(S, q1,92) = Vo + 66;: 91 + aaqz gz + ;—qTVq= RV, + ;—qTVq (4-10)
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Use of (4-9) and (4-10) and replacement of g, and g, by v; and v, yields (after some
algebra) that
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Inserting (4-11) and the foregoing approximations for A and its derivatives into (4-7), and
then dropping the 8%/ 35? term results in the following parabolic equation
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where v is a column vector with first component v, and second component v;,.

The complete solution to our wave equation in the ray centered coordinate system, with

the parabolic approximation, is given by
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u(S,q1,921) = exp | —iwlt —f ?/S
S, 0

]

U(S,Vl, Vs )

where U is a solution of (4-12). It is clear, from the foregoing discussion, that the ray-
centered coordinate system is simple, elegant and simplifies much algebra. This coordinate
system is also a very powerful tool for theoretical investigations, such as the derivation of

the parabolic equation in a three dimensional inhomogeneous elastic medium.

SEP-28



Yedlin 92  Wave Egquation in Ray-Centered Coordinales

ACKNOWLEDGMENTS

The previous four lectures are based on the work of V, Cerveny, F. Hron, M.M. Popov and
1. PSendik. In particular, this author is grateful for the preprint "Expansion of a Plane Wave

into Gaussian Beams''.

REFERENCE

Popov, M.M. and PSendik, 1., Ray Amplitudes in Inhomogeneous Media with Curved Interfaces.
Geofysikalni Sbornik XXIV (19786).

Cerveny, V. and Hron, F., The Ray Series Method and Dynamic Bay Tracing System for
Three-Dimensional Inhomogeneous Media. Bulletin Seismological Society of America, Feb.
1980.

Cerveny, V., Expansion of a Plane Wave into Gaussian Beams. Studia Geoph. et Geod., in
press.

SEP-28



