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Ray Tracing Equations In Three Dimensions

Mathew J. Yedlin

The following four lectures serve as an introduction to ray tracing. They are based
mainly on the material quoted in the references. The purpose of these lectures is a tutorial

ong, in that they serve to elucidate the basic material.

In the first lecture the equations for ray tracing in a three-dimensional inhomogeneous
elastic medium are derived from a conservation principle. This principle maintains that locally
the wave crest density must be conserved. The second lecture deals with ray tracing and
Lagrangians. The connection between the ray tracing equations and a variational principle is
demonstrated. The ray tracing equations are then derived again using Hamilton’s equations.
There is a slight shift in emphasis in the third iecture from physics to geometry. An elegant
ray-centered coordinate system is introduced. This coordinate system relies on the dif-
ferential geometry of space curves. Thus, a derivation of Frénet’s formulae is included.
Finally, all the previous material is applied to the wave equation. It is first written in the new
coordinate system. Then a high frequency approximation is used to develop the parabolic
equation, in which the extrapolation direction is along a particular ray. It is very similar to
the well known equation applied in migration, and differs only in the inclusion of two addi-

tional connection terms.

One Dimensional Ray Equations

In all of what follows, the most important definition encountered is that of the phase of
a traveling wave. To be more specific, we shall require the phase 7 to be local. Its value
could be some multiple of 2, if the wave had advanced an integral number of crests. For the
one-dimensional example, the phase will be a function of x and t. Since the phase is a
smoothly varying function of x and t, we can define its local derivatives. The rate of change
of 7 with respect to t locally is 277 /T, where T is the wave period. Similarly, the rate of

change of T with respect to x is 277 / A. In summary,
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or _ 2m _ ot _ _2m _ _ -
TR i = k (1-1)

Notice the appearance of a minus sign in the second of the equations in (1-1). This implies
that the phase decreases with x by an amount 27, between crests a distance of A apart.
The minus sign follows since late arriving crests have a large value for 7. Regardless of the
sign convention chosen for our values for the local phase derivatives, the ray tracing equa-

tions should remain invariant.

With the phase properly defined, we can write down an expression for a wave distur-

bance as:
wul(z,t) = ulz,t)ei™®t)

where % is a slowly varying amplitude function. Near a specific (z,,f, ), we can expand the

phase, 7 as a Taylor series as follows

- or _ oT _ -
T =17, + o7 |z ¢, (z—x,) + of I, ¢, (t-t,). (1-2)
From Eq. (1 -1),
ot oT
- = -k —_— =
0z [%o ko ° ot z, 4 o

Therefore, u is nearly a plane wave with a local wavenumber k£, and frequency w,.

The above definition of the phase and its derivatives vields a very nice result. It is
derived by differentiating the local wavenumber with respect to time and the local fre-
qguency with respect to x. From (1-1), we obtain

ok _ _ %7 dw _ %1
ot Ox Dt 8z Ox ot

or

Ok | 0w _

ot T oz (1-3)

Equation (1-3) is both a conservation and continuity equation. It states that the time rate
of change of phase per unit length is related to the spatial rate of change of phase per unit

time. Stated otherwise, the net phase-crest density is conserved.

The conservation equation is a first order partial differential equation which may be
solved by the method of characteristics. Generally, there may exist a dispersion relation or

equation of state which relates w to & . Then by the chain rule,
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0w _ dw Ok

oz ok oz
Equation {1-3) then becomes

ok, dw Ok _

Bt ' 8k ox (1-4)

Equation (1-4) can be written in simpler form, if we notice that on the set of curves defined

by

dxr _ dw _
dk _ _

The curves defined by the differential equation in (1-5) are called characteristic curves,
and in geometrical optics, they represent the rays. Note also that the slope of the charac-
teristic curves equals the group velocity. Physically, this means that if you wish to observe
waves with the same local wavenumber (or wavelength) , you must focus on a point travel-
ing with the group velocity 9w/ k. Finally, it is important to realize that if the dispersion
relation is of the form w(k,z), the characteristic equation (1-5) no longer represents

straight lines. Therefore, we have created the phenomenon of refraction.

Three Dimensional Ray Tracing

Ray tracing in three dimensions can be readily derived by following the cues obtained in
solving the one dimensional problem. Again a local phase function 7 is defined such that a
local frequency and local wavenumber may be assigned at each point of space and time. To
do this it is required that the wavenumber % vary slowly on a length scale equivalent to a

wavelength. The local wavenumber and frequency is defined as before:

6T(x¢,t) _
= wlmt) (1-7)
and
b
6—7(;5‘1_——)—= —k(zt) i=1,23 (1-8)

Equations (1-7) and (1-8) are identical to those in Eq. (1-1), except that there are three
spatial coordinates instead of one. By differentiating (1-7) with respect to z; , (1-8) with

respect to { , and adding the results, we again obtain the conservation equation,
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0w Bk,
=0. -9
oz, + 5 =0 (1-9)
We also obtain from (1-8) that
ok,  Ok;
—t _ = 1-10

It is most important to note that a partial derivative with respect to x; in (1-9) means that

time and the other z; are held fixed.

Now hypothesize a known dispersion relation of the form:
w = W(kl, kz, ks, Zy, Zp, .’2’:3) (1'11)
With the dispersion relation defined in (1-11), we calculate 3w/ dx; which is given by

oW + oW 0Ok;

1-12
Substituting into the conservation equation (1-9), we obtain
ok, ow ok, oW
+ = — 1-13
ot Ok; 0Oz, ox; ( )
From (1-10) we can rewrite (1-13) as
Bk; aw Ok, _ oW
ot ' ok; oz | om (1-14)

As before, we notice that (1-14) can be written as an ordinary differential equation if we

make the identification that

dz; oW
1 - Y7 -
dt ok; (1-15)
Then equation (1-14) becomes
dk; /4
Tl oz, (1-16)

provided equation (1-15) is satisfied. The coupled system, Egs. (1-15) and {1-16) deter-
mines our rays. Equation (1-158) defines the actual ray paths. Along those ray paths, (1-
16) determines how the local wavenumber changes due to the direct dependence of the
dispersion relation on the spatial coordinates. This means that the wave is being refracted,

and the rays are no longer straight lines, but some general space curves.
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Three Dimensional Ray Tracing Equations,

We shall now focus on a particular form for % . It is well known that the dispersion

relation for a three- dimensional acoustic medium is

w=vVk? +kf +ki = Wk, ko kg, 21, To, Zg) . (1-17)

where v , the velocity, is a function of all three spatial coordinates. Then, for the ;* com-

ponent of the ray velocity, we obtain

14 vk vk; vk . (1-18)
= = = = - -
Ok; VEE +k§ + k3 vVk? + kZ + kB w P
k; . . .
where p; = pat Thus, for the dispersion relation chosen, (1-15) becomes
dr.
T = Pt (1-19)

where 7 is the travel time along the ray.

Similarly, we find that

dk; ow ou
] = — —- — 2 2 2 _
e 5z, 52, VEkZ + k3 + k3 (1-20)

Equation (1-20) can be rewritten in neater form by setting k; = wp; , and by noting that

w doesn’t depend on time. Therefore, we obtain

dp; o vVEE+kE+kE o aw
wW—— = — = - — =
dTt 6:1:]- U v BxJ—
or
dp; B
i 5z In v (1-21)

Equations (1-18) and (1-21) are the ray tracing equations for our three-dimensional acous-
tic medium. In an elastic medium, there are two dispersion relations of the form of (1-17),
with two different velocities. Each ray system (P or S) would have to be traced separately,

with the appropriate interface condition applied, when a boundary is encountered.
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