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Computation of Geometrical Spreading by Dynamic Ray
Tracing

Vlastislav Cerveny

1. Introduction

In the evaluation of ray amplitudes and ray synthetic seismograms, it is necessary to
know the geometrical spreading. Geometrical spreading can be determined in several ways.
For simpler types of media, such as vertically inhomogeneous or radially symmetric media, it
can be computed by analytical methods. This is, however, not possible for general laterally
inhomogeneous media. In case of laterally inhomogeneous media, another method is often
used. The geometrical spreading is computed by direct measurement of distances between
individual rays. This method is, however, rafher rough and causes difficulties in various
situations. It would be better to have some method which would allow us to determine the
geometrical spreading by some computations along just one ray. Such a possibility is

offered by dynamic ray tracing.

Similarly, as in the three preceding papers (Eerveny 1981a, 1981b and 1981c,
hereafter denoted by |, Il, and 1ll), we shall consider an arbitrary ray () and use the ray
centered coordinates (s,n) connected with this ray. The coordinate s measures the arc
length along the ray from an arbitrary reference point and n represents a length coordinate
in the direction perpendicular to () at s . We remember that this system is orthogonal, with
scale factors h,1, where h = 1 +v,,n/v ( v denotes the velocity and wv,, its
derivative with respect to n at Q ). In this system, the travel-time field 7(s,n) in the

neighborhood of () is given by the relation

sm) & 7(s,0) + 3-M(s)n? (1)
where M(s) = | 8%7(s,n)/ on? . <o Is asolution of the dynamic ray tracing equation
dM(s) 2 Ysnn _
gs TUMi+ —5— =0 (2)

When we introduce new functions p(s) and g(s) by the relations M(s) = p(s)/g(s)
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Lerveny 50 Geometrical Spreading

and p(s) = g,s/v(s), the system (2) can be rewritten in the following form
Y,
W) oopisy, Lo P gy ®

It was shown in [11l] that the dynamic ray tracing system (3) can also be used to compute
rays n = n(s) in the neighborhood of } ,whenweput ¢ = n and p = p, ( p, is

the n-component of the slowness vector § ).

In this paper, we shall show another application of the dynamic ray tracing system (3)
-- the evaluation of geometrical spreading. As geometrical spreading is introduced by vari-
ous authors in different ways, we shall first devote some attention to geometrical spreading
itself, without any relation to dynamic ray tracing. As is common in the present literature
devoted to ray theory, we shall use, instead of geometrical spreading, the Jacobian of the
transformation from Cartesian to ray coordinates ( function J ), which is strictly and uniquely
defined. The various forms of geometrical spreading introduced in seismological literature
can be determined from function J. Later we shall show how to use dynamic ray tracing to
compute function J. We shall also shortly describe possible means of computing some other
related quantities (curvature of the wavefront, radius of curvature of the wavefront, the

Laplacian of the travel-time field, etc. ).

2, Ray Fields

We shail consider a one-parameter 2-D system of rays. Each ray is specified by a
parameter <y . The ray parameter y may have different meanings in different situations.

Let us present two important examples.

a) First example

In the case of a line source , the ray parameter - is usually introduced as the angle
i, » which specifies the initial direction of the ray at the source (see Fig. 1a). Instead of
the angle i, we can, of course, use any other parameter which specifies uniquely the initial

direction of the ray.

SEP-28



Cerveny sl Geometrical Spreading

b) Second example

In the case of a selected wavefront (e.g. wavefront of a plane wave), the initial direc-
tions of rays are known - they are perpendicular to the wavefront. Each ray is fully speci-
fied by the point of the wavefront to which it is connected. In this way, the ray parameter

v may be considered, for example, as an arc length along the wavefront (see Fig. 1b).

There are, of course, many other possible ways to introduce the ray parameter in vari-
ous situations; we shall not discuss them here. We shall introduce the ray coordinates
(¢,7). The coordinate y has the same meaning as shown above; it selects one ray from the
whole system of rays. The coordinate { specifies the position of a point on the selected
ray. Usually, { is the arclength along the ray, measured from an arbitrary reference point, or

the travel-time along this ray.

Thus, the position of any point S{x,z) can also be expressed in the ray coordinates
(&7). To do this, we must first find the ray which passes through the point S (and thus

determine <) and then find £, the coordinate along the ray, see Fig. 1.

-
—
s

FIG. 1. S(&,1,)

'\
!
!

wavefront b

Let us emphasize the large difference between the ray coordinates (£,7) of the point .S and
the ray centered coordinates (s,n) connected with some ray ( of the same point S (see
Fig. 2).

Let us now for a while understand that ¢ = 7 (travel-time along the ray). Consider

parametric equations
z =z(1,y), z = 2(1yy) . (4)

When 7 is fixed and the travel-time 7 varies, the system (4) represents the parametric
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equations of the ray specified by the ray parameter . For fixed travel-time T, as 7

varies, these equations are equations of the wavefront.

FiG. 2.

' wavefront

We call the ray field regular when one and only one ray passes through each point.
Thus in the regular ray field, the rays cannot intersect and cannot form shadow zones. The
same terminology applies to ray coordinates -- they are regular when the ray field is regular,

and vice versa.

In the following, we shall again understand that ¢ is the arclength along the ray. How-
ever, we shall continue to denote it by ¢, in order not to confuse it with the ray-centered
coordinate s. A very important role in the theory and applications of ray fields is played by
the Jacobian of the transformation from Cartesian to ray coordinates. We shall denote it by
J and call it, for simplicity, function J. As well known, the Jacobian of the transformation is

given by the equation

8z 0z
¢ B¢
J = . (5)
8z 0z
dy oy

It will be shown later that function J measures the expansion and contraction of the ray
tube. When two neighboring rays intersect, the function J vanishes, J = 0. Such points are
called caustic points, In shadow zones, where rays do not exist, J is not defined. Thus we
can say alternatively: when the Jacobian J is defined and does not vanish at any point of
the region D, the ray field is regular in the region D. On the other hand, the ray field is called

irregular at any point where J is not defined or vanishes at that point.

SEP-28



Lerveny 53 Geometrical Spreading

Now we shall introduce a very important term, the elementary ray lube. By the ele-
mentary ray tube we mean the family of rays the parameters of which are within the limits
(7,7 +dy) (see Fig. 3). The term "ray tube” is used mostly in 3-D media, but we shall
keep this notation also here, even though we consider only the 2-D situation. At caustics,

the width of the elementary ray tube shrinks to zero.

3. Function J in the ray-centered coordinates ( s , n )

Function J can be very simply expressed in the ray-centered coordinates (s, n ),

connected with the ray (1, especially when we compute it directly at Q.

Let us first perform the transformation from ( x , z ) coordinates to the ray-centered
(s, n ) coordinates, and then from ( s , n ) coordinates to the ray coordinates ( £, ¥ ). The
Jacobian of the transformation from (x , ¢t ) to ( £, v ) coordinates is then expressed as a

product of two corresponding Jacobians,

oz 9z | |ox 8z | |8s on
Pt B¢ 8s 0s B¢ o¢
J = = . . (6)
ox 0z oz 0z Os on_
dy 0Oy fn On oy 08y

As the ray centered coordinate system is orthogonal with scaling factors h, 1, we have

oz 0z
fs ©Os
=h . (7)
bz 0z
on On

Directly at theray () we have h =1, 8s/08¢ =1, On/ 98¢ = 0, From this immediately fol-
lows

- on

J-—67

(8)

This is the final expression for the function J in the ray-centered coordinates ( s , n ) con-
nected with the ray (1, directly at (). When we keep other relevant quantities fixed, we

can replace 8n / 8y by dn / d7y and rewrite (8) in the form

dn

Jdy , (9a)
or, in finite differences

A = J Ny . (9b)

SEP-28



Cerveny 54 Geometrical Spreading

As we are directly at {), we have approximately dn = An = n. Then, we can rewrite (9a)

and (9b) in the following form:
n & JAy . (9¢)

It was shown in [1II] that the rays (), in the neighborhood of the ray () are described by
the formula n = n(s), and can be determined from the dynamic ray tracing system (3).
Thus, dn ® n measures the width of the elementary ray tube. Equations (9b) and (9c)
clearly demonstrate that function J is a good measure of the expansion and contraction of
the ray tube. Equation (9c) also represents the most common approach to the determination
of J : J =n/Ay, where n is the normal distance between two rays specified by ray

parameters ¥ and v + Ay (see Fig. 3).

FIG. 3.

4, Evaluation of function J by dynamic ray tracing

We shall return to our dynamic ray tracing system (3). It was shown in [llI] that this )

system is also the ray tracing system for the rays (), which are close to (1,

dn _ dp, _ _Vsnn

as = Pr o ds % (1
(see Eq. (111-7)). Differentiating this system with respect to 7, we obtain

dJ _ apP _ _Vmn_

ds—'uP, - J o, (11)
where

on apn
= , P = . 12
J 5y 5y (12)
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Here J again denotes the Jacobian (function J), and P is the auxiliary function -- the
derivative of the normal component of the slowness vector with respect to the ray parame-

ter y.
Thus, we have again arrived at the dynamic ray tracing system (see (3)). The dynamic
ray tracing along the ray can be used to determine function J and auxiliary function P.

Let us specify the initial conditions for the dynamic ray tracing system (11) when we
wish to use it for the determination of function /. We shall again consider two examples:
line source and plane source (or plane wavefront). The initial conditions for a line source are

given by equations

1

for 5 =5, : J(s,) =0, P(So)=m, (13)
as can be immediately obtained from (lli1-8a). For a plane source:
for s =8, : J(s) =1, P(s,) =0 . (14)

These initial conditions follow from (111-8b). As we can again see, these two sets of initial
conditions specify two linearly independent solutions of (11). We can call them '"the line
source spreading’” and ''the plane source spreading”. Any other solution of {(11) is obtained
as a linear combination of these two solutions. This applies even to complex solutions of

(11), which are important in the theory of Gaussian beams.

In [11], analytic solutions of the dynamic ray tracing system were found for three typi-
cal simple situations: a) v,,, =0, b) v,,, = const >0, ¢) v,,, = const <0 . The same
solutions can be used for function J and the auxiliary function P, when we use appropriate
Initial conditions (13) or (14).

8. Dynamic ray tracing and the curvature of the wavefront.

In the dynamic ray tracing, we have used the function #M(s), which represents the
second derivative of the travel-time field with respect to the coordinate n , determined
directly at (). Alternatively, we can use the curvature of the wavefront K(s) instead of
M(s). We shall not give here the detailed derivation of all presented formulae; this part of

the text is included only for completeness.

It is possible to show that the relations between the curvature of the wavefront K(s)

and M(s) (respectively p(s) and g(s) ) are as follows:

_ _ wvp(s) _ ding
K(s) = vM(s) = 7(s) = T . (15)
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Inserting (15) into (2), we obtain a non-linear ordinary differential equation of first order of
the Riccati type for K(s)

dK Vs

ds v

K+K2+'U’%=0. (16)

This formula is slightly more complicated than (2) due to the second term. The solutions of
{(2) are not quite straightforward in trivial situations. For example, for v,,, = O we get
(see also (11-17)),

v(s) K(s,)

K(s) = 17)

v(s,) + K(s,,)f'U(S)dS

Curvatures of wavefronts are sometimes used to compute the function J. The relation

between J and K(s) is as follows (see {(15)),
J(s) = J(s,) exp( [ K(s)ds) . (18)

(We remember that g (s) has the same meaning as J(s) ).

It might be also useful to use the radius of the curvature of the wavefront Z(s)

instead of the curvature of the wavefront K(s),

-1 _ _1 - als)
R(s) = K(s) ~ wM(s) = wp(s) ° (19)

The differential equation for #(s) immediately follows from (16),

dR(s) + U,s R - Vsnn B2 = 1

ds )] U (20)
Forv,,, = O , we obtain the solution (see (17)),
8
v(s,YR(s,) + fu(s)ds
R(s) = %o (21a)
u(s)

In an homogeneous medium, this yields a well-known formula

R(s) = R(s,) +(s —s,) , (21b)

which has been used in many applications and which has a clear physical interpretation. The

relation between the function J and R (s) is as follows,
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J(s) = J(s,) exp(f}?‘l(S)dS) . (22)

6. Determination of the Laplacian of the travel-time field by dynamic ray tracing

By Laplacian of the travel-time field we mean the function

8%t . B*t

ver = 27, O
T dx? dz?

(23)
This function is closely related to the function J and plays an important role in ray methods.
It is not complicated to show that this function can be simply computed by the dynamic ray

tracing.

The Laplacian V2T can be rewritten in curvilinear orthogonal coordinates £, , £, with

scale factors h, , hp as follows,

1 )
Vi1 =
hihe { a¢;

he o7 |, @
hy 96 0¢z

hy 67‘]
hy 0&; J] ' 24

In the case of ray-centered coordinates (s,n), we have h; = h, hp =1, § =5, fL=n,

o _ 1 811 871 6l ot
VT—ha?{ha-}-anhaA’n], (25)

At the central ray () we obtain from (25),

This yields

VZT — 627' + 627

26
ds?  an? (26)
This gives
Vr = —— ' o+ M. (27)
vR(s)

This formula expresses V31 in terms of function }. Note that this equation can be also

obtained directly from (11-23). Taking into account that M(s) = %, we obtain a relation

d J
Eh’l [;—] N (28)

between g(s) (respectively J(s)) and V1,

Ver =

[~

respectively
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v(s)

J(s) = v(s,)

J(so)exp | f vVPrds] . (29)

7. Function J for a point source in a 2-D medium

We have considered here only 2-D media with a line (or plane) source. We are, how-
ever, very often interested in wavefields generated by a point source, even though in a 2-D
medium (in which the velocity does not depend on one coordinate). The corresponding gen-
eralization does not immediately follow from some equations presented here, as they apply
only to 2-D symmetries, which do not take into account the spreading in the plane perpen-
dicular to the profile. We shall, however, present here the results of a 3-D investigation of
this situation (see e.g. Cerveny and Hron, 1980). The result is not complicated and can be
inductively understood even without a detailed derivation. To obtain the function J
corresponding to a point source, the function J for a line source should be multiplied by some
"correction" function J; (s) (we call it "J perpendicular’), which describes the spreading in
the perpendicular direction to the profile. The function J; (s) can be again obtained from a
dynamic ray tracing system with the coordinate n perpendicular to the (z,2) plane. In a 2-D
model, however, v,,, = 0 in this case. The solution can be therefore written analytically
(see (11-186)), with n(s) = J; (s) ,

8
Jp(s) = Jp(s,) + Pr(s,) fuls)ds | (30)

So
For a point source, we have J (s,) = O and P (s,) = -Q%T’ similarly as in (13). Thus,

/]
we get finally
1 8

Jr(s) = v(so)_s{'u(s)ds . (31)

8. Concluding remarks

To use the differential equations for the computation of geometrical spreading is an old
idea (see e.g. Belonosova, Tadzhimukhametova and Alekseyev (1967) , Cerveny and PSenéik
(1974)). The differential equations were, however, usually rather complicated. Simple
dynamic ray tracing systems to compute function J (similar to those presented here) were
first derived by Popov and Psendik (1978a, 1978b), (see also (’:erveny, Molotkov and

PSendik (1977)). Curvatures of the wavefront have been used in the interpretation of
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seismic data by many authors (see e.g. Hubral (1980), Shah (1973), and other references

given there).

The equations for the evaluation of ray amplitudes where function J is known are not

presented here; we refer, e.g., to Cerveny, Molotkov and P$enéik (1977).
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ROGUE RECORD SHEET

Name

Highest level __
Highest experience
Highest hit points
Highest strength _
Lowest armor class

POSSESSIONS
WEAPONS

ARMORS

POTIONS

MONSTERS KILLED
ANT _
BAT —__
CENTAUR ___
DRAGON __
EYE ___
FUNGUS ___
GNOME ___
HOBGOBLIN ___
INVISIBLE STALKER
JACKAL ___
KOBOLD ___
LEPRECHAUN ___
MIMIC ___
NYMPH —__
ORK __~
PURPLE WORM ___
QUASIT ___
RUST MONSTER ___
SNAKE _
TROLL ___
UMBER AULK ___
VAMPIRE ___
WRAITH ___
XORN __~
YETI —__
ZOMBIE ___



