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Ray Tracing in a Vicinity of a Central Ray

Viastislav Cerveny

1. Introduction

The dynamic ray tracing along the ray ) can be very useful not only for the determina-
tion of the travel-time field 7 in the neighborhood of (), but also in the computation of rays
which are close to ). In the following, we shall show how the dynamic ray tracing along ()
can be used to determine these rays. The results will also help us considerably to under-

stand the physical meaning of individual quantities involved in the dynamic ray tracing.

We shall again use some results from the two previous papers, Cerveny (1981a) and
Cerveny (1981b). For simplicity, we shall refer to these two papers as paper [I] and paper

[1]. We shall also refer to equations from these papers in the same way, e.g. Eq. (1-22).

We shall select an arbitrary ray () and use the ray centered coordinate system (s,n)
corresponding to this ray. The coordinate s measures the arc length along the ray ) from
an arbitrary reference point, and n is a length coordinate in the direction perpendicular to
(} at s. In this coordinate system, the travel-time field 7(s,n) in the vicinity of () is

given by the approximate equation

s,m) & 7(s,0) + 2 His)n? )
where M(s) = |8%7(s,n)/ 8n? n =p - The quantity M(s) is a solution of the "dynamic ray
tracing' equation,

AMCs) | oy Y g (2)
ds u® ’

where v,,, is the second derivative of velocity with respect to n , determined at Q. It
was also shown in [1] that this nonlinear ordinary differential equation (of Riccati type) can

be rewritten to two linear differential equations of first order

%SE - _ Vsnn q (3)
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Cerveny 40 Ray Tracing

when we put M(s) = p(s)/q(s) with p(s) = gq,/v(s). We did not, however, explain
what is the physical meaning of p(s) and g(s). Both these quantities have a very impor-
tant physical meaning and can be used in various applications (computation of ray ampli-
tudes, Gaussian beams, etc.). Therefore, we shall devote much attention to these quanti-

ties.

2. Slowness Vector in Ray-Centered Coordinates

In all ray tracing systems, an important role is played by the slowness vector. Again we
shall denote the slowness vector by B . We remember that it is given by equation
© = V7. It has a direction perpendicular to the wavefront and the magnitude 1 /velocity
(i.e., slowness). In the ray-centered coordinate system (s,n), the slowness vector is

given by the relation

-1

- g -
o = h7i1st + 17,

see (1-9). Here h is the scale factor given by the equation h = 1 +v,,n/v, f is the

-

unit tangent and 72 unit normal to (2. From this, we easily obtain the equations for both

components of the slowness vector, p; and p, , with the accuracy up to linear terms in

n,
- 1 Usn
Ps = h7it,s N o o2 n , (4)
Pn = Top N Mn , (5)

see (1-16a) and (I-16b). In the following, we shall be mainly interested in the component
Pr » Which has a large practical importance. In [Il], we introduced a rectangular Cartesian
coordinate system (I,m ) with basis vectors 7 , M. which coincide at the point s = s, of
the ray () with unit vectors f and 7. We found the expressions for the components of
the slowness vector p, = 87/0l and p, = dr/dm at any point S(I,m), see Egs.
(11-11) and (11-12). We shall introduce again a similar system and look for the components
of the slowness vector directly at the m-axis (i.e. for I = 0), see Fig. 1. Comparing (4)
with (11-11) and (5) with (lI-12) we can see that p, = p,, and p; = p; in this case,

with the accuracy up to linear terms in m .
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FIG. 1.

wavefront

3. Rays in a Vicinity of the Central Ray

In this section, we shall derive the ray tracing equations for a ray, which is situated

close to the centralray (}. We shall denote such a ray by (), , see Fig. 1.

We know that the rays are perpendicular to the wavefront, i.e. they have the direction
of the slowness vector. In the Cartesian coordinate system (I , m), this condition can be

expressed as follows

dm - Pm
dl pz !
see Fig. 1. Here dm is the change of m along the ray (), when the changein I is di.

This equation can be replaced, with the accuracy up to linear terms in n by the equation

dn__ Pn_
ds Ps
The differences between corresponding quantities (n ® m ,dl ~ ds,p, ~ p, and

P, ™ pg) are of higher order in n and need not be considered. Taking into account also

(4), we finally obtain

d
dsi = Up, . (6a)

This is the first equation in the ray tracing system.

Now, we shall find how the quantity p, changes along the ray. We can write,

dp, - 0P, + dpn on_
ds os on ds '

SEP-28



Cerveny 42 Ray Tracing

From (5) we obtain 8p,/8s = M,sn and 8p,/8n = M .Using also (6a), we get

dp.
ds" = n[M,s +’UM2] .
However, we know from the dynamic ray tracing equation that
dM/ds + uM? = —w,,,/v?, so that
dpm — Usnn
T - - ’v—z'n . (6b)

Thus, we have derived the ray tracing system for any ray (), , which is close to the central

ray {2,

dn _ dpn _ Vsnn
as T WP Tge T T E ("
The system is written in the ray centered coordinate system (s,n), corresponding to the

centralray (1.

The ray tracing system (7) we obtained is rather surprising - it corresponds fully to the

dynamic ray tracing system (3), whenweput ¢ = n and ¢ = p, .

Now we can easily see the physical meaning of quantities g(s) and p(s) that were
introduced rather formally to simplify the dynamic ray tracing equation (2). In fact, the
dynamic ray tracing system (3) is again a ray tracing system, for rays (), situated close to
the central ray (). The quantity of g corresponds to the distance of theray (), from (),
the quantity p is the component of the slowness vector in the direction perpendicular to

theray 0.

What is the advantage of our ray tracing system (7) in comparison with the standard
ray tracing system? In 2-D media, the standard ray tracing system is formed by three non-
linear ordinary differential equations of first order. The right-hand side of these equations
must be evaluated independently at any point of each ray. Our ray tracing system (7) is
formed by fwo linear ordinary differential equations of first order. The quantities v,,,/v?
and v at the right-hand sides of (7) are functions of the coordinates along the central ray
() only. They can be determined along () only once for a whole family of rays (), close to
(. As soon as v and 'u,,m/vz along () are determined, we can compute arbitrary

number of rays (), practically without any work.

Let us specify the initial conditions for the ray tracing system (7) :

1

for s So: n(sy) = ng, puls,) = Dn, - (8)

The first condition (n(s,) n,) specifies the distance of the ray (), from the central

H
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ray (} at s = s, , and the second condition (p,(s,) = p,) specifies its initial direction
at the same point & = s, . The second condition can be, of course, also replaced by some
initial angle of the ray at s =s,, e.g. by the angle i, between () and (), at s = s,.
The determination of p,(s,) is thus straightforward. It is simple to see that for a line

source situated at s = s, we have
n, = 0, Pn, = sini;/v(s,) . (8a)
In the case of a plane wavefront at s = s, , we have
n, ¥ 0, Pn, = 0 . (8b)

We shall call the solution of (7) which corresponds to the initial conditions (8a) the "line
source solution”, and the solution which corresponds to (8b) the "plane source solution'.
Both these solutions are linearly independent, so that any solution of (7} can be constructed

as a linear combination of these two solutions.

4, Rays as Solutions of the One-Dimensional Helmholtz Equation

Another useful form of the ray tracing equations (7) is easily obtained from (7) when

we insert p, from the first to the second equations. We get

d {1 dn Uinn

—_ =y 222 =0, 9

ds [v as | e » 70 ©
This is, of course, fully equivalent to (1-25) when we put ¢ = n . Equation (9) can be

even more simplified when we introduce a new variable 7 along the central ray (0 instead

of s by the relation
]
dn = wvds, i.e., N = M +f’u(s)ds , (10)
8o

Then, multiplying (9) by v, we immediately obtain

d?*n | Vwmn
z ¥ s
dn v

n =0. (11)

But this is a one-dimensional Helmholtz equation! The result is really surprising. We
remember that the one-dimensional Heimholtz equation (i.e., the one-dimensional wave equa-
tion for harmonic waves) has the following form

du
dy2

+k%z = 0, (12)
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where u may represent various physical quantities in different wave propagation problems,
k is so-called wave number, £k = 27n/A = w/c , where XA is the wavelength, w is cir-
cular frequency and ¢ velocity. Let us consider the case that v,,, >0. Comparing (11)
with (12) we can see that the "effective wave number" k, and "effective wavelength”

Ae in our ray tracing system (11) are given by relations

Vsnn U
= s = . 3
ke " Ao 27~/ - (13)

All these quantities have, of course, sense only when v,,, > 0.

5. Simple Examples of Rays in the Vicinity of the Central Ray ()

We shall show here three elementary examples, corresponding to three different types

of rays (. in the vicinity of a central ray (1.

a) First example: v,,, = O

This is a very important example, as v,,, = 0 not only in homogeneous media, but
also in media with constant velocity gradients, see (11-21). In this case, the solution of (11)

is as follows:
8
n(s) = n(no) +a(n —7,) = n(s,) +a fv(s)ds , (14)

where @ is time constant. For p,(s), we obtain from (8),

Puls) = pals,) . (15)

Thus, p,(s) does not change along the ray in this case. As p,(s) = v }(s)dn(s)/ds,

we immediately obtain p,(s,) = a . Thus, we can finally write (14) in the following form
§
n(s) = n(s,) + p,(s,) [wis)ds . (16)
So

Therays {), of this type are schematically shown in Fig. 2a.

Note that the function M(s) is given in this case by the equation

(M(s) = p(s)/q(s) = pr(s)/n(s))
M(s) = Palse) = M) (17)
n(s,) +pn(so)f'u(s)ds 1 +M(sa)f11(s)ds

So
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For n(s,) = 0 wehave M(s,) = = ; the result which was, of course, expected.

b) Second example: v,,,/v® = k>0, where k, is constant

This is a typical situation when the central ray () lies on the axis of a symmetrical

waveguide, along which the velocity does not change. The solution of (11) is then as fol-

lows:
n(s) = n(s,) cos |k, [ v(s)ds | + pa(s,)kg ! sin ke [ w(s)ds |,
pn(s) = p.(s,) cos |k, f'u(s)ds —kyn(s,) sin | &, f'u(s)ds , (18)

where k, = Vv,,,/v°. The formula for M(s) is straightforward. As we can see from
(18), the rays (), oscillate around (1, see Fig. 2b. The above introduced 'effective

wavelength A, " has a clear sense in this case.

FIG. 2.

¢) Third example: wv,,,/v3 = —k?, where k& is constant.

This is a typical situation when the central ray () lies on the axis of some symmetrical

high-velocity layer. In this case, the solution of {11) is as follows:

S s
n(s) = Aexp kfv(s)ds + Bexp |~k f'u(s)ds .
80

So

SEP-28



lerveny 46 Ray Tracing

pr(s) = |Aexp Icf'u(s)ds — B exp —kfv(s)ds k (19)

8p Sy
where

A = Jz——[kn(sa)+pn(so)], B = V-vpn /v

NI-‘

[kn(so) —pn(so)] , k

The rays (1, exponentially deviate from the central ray 0 (or exponentially approach the

central ray ) ). The situation is again shown schematically in Fig. 2c.

In many seismological situations, the velocity usually varies very smoothly and v, is

rather small. Then the situation is similar to the case shown in Fig. 2a.

It would be possible to write analytical solutions of (11) even for more complicated
cases. For example, when 'u,,m/v3 is a linear function of s, the solution of (11) can be
expressed in terms of Airy functions. For general laterally inhomogeneous media, however,

Eg. (11) or equivalently Egs. (7), must always be solved numerically.

6. Derivation of Ray Tracing Equations by Fermat's Principle

In section 3, we derived the ray tracing system (7) for rays {), which are close to the
central ray {). We derived them using the assumption that the rays are orthogonal trajec-
tories to the wavefronts. We know that in isotropic media such an assumption is correct,
but it may be useful to show that these equations also follow simply from the Fermat’s prin-

ciple.

Let us write the Fermat’s integral in the ray centered coordinates (s,n) (which are

connected with the ray (1),

T = (20)

j VRZds? + dn?
% V(s,n) ’

where S, and S are some points which are close to the ray (). We remember that the
quantity Vh2ds® + dn® represents an elementary length element, written in ray centered

coordinates (s,n), see [I]. We can rewrite it in the following form

Vh¥ds? + dn® = AV1 + R 3(n")?ds

where n’ = dn/ds is a small quantity. We can therefore write

1

VRZds® + dn? ~ h
e 2h7

1+

ds . (21)

(n')Z] ds N h1+ ;—('n')z
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Similarly, we can write for 1/ V(s,n), see (1-20),

1 Ay _Ym e
Y(s,n) vh [1 2u n ] ‘ (22)

Then we can rewrite the Fermat’s integral in the following form
s
T = fF(s,’n,n')ds s (23)
SD

where

1+ 1—(77,')2 - .'Ulm_.nz (24)

L
Fls,n,n7) = v 2 2v

12 _VYmn | 1
1+2('n)][1 2U’n,] p

Euler’s equations for the extremal curve (ray) of the functional (23) has the form

d | 8F oF _
ds 6'n,'] am - 9 (26)
In our case, from (24) we immediately obtain
d |1 dn Yinn -
prol byl I - n =0, (26)

This is fully equivalent to (9). The reduction of (26) into (7) is straightforward.

Concdluding Remarks

Similar ray tracing equations for rays (), situated in the neighborhood of some central
ray {) were probably first written in a different form by Babich et al., see e.g. Babich and
Buldyrev (1972), Babich and Kirpichnikova (1974). They called these rays 'rays in the first

approximation” (luchi v pervom priblizheniyi).

In seismological literature, the ray tracing equations in the ray centered coordinate
system (s,n) connected with some central ray were first discused in Cerveny and P3enéik
(1979). The ray tracing equations presented in Cerveny and PSenéik (1979) are exact,
without any assumption that the points S, and 5 are close to (). They are, of course,

rather more complicated.

The derivation presented here is new.
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