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Dynamic Ray Tracing in 2-D Media

Vlastislav Cerveny

1. Introduction

In standard ray tracing, the slowness vector § = V7 is computed at each point of the
ray. The slowness vector determines fully the first derivatives of the travel-time fieid

(z,2).

In many applications, it would be very useful to know also the second derivatives of the
travel-time field. They have a large importance in themselves, e.g. in the solution of inverse
problems, in the solution of two-point ray tracing, in the evaluation of the geometrical
spreading and ray amplitudes, etc. They may be also used to determine the basic geometri-
cal characteristics of the wave fronts ( e.g. principal curvatures). In fact, they give us
some information about the travel-time field not only directly on the ray, but also in its neigh-
borhood.

We shall derive various forms of ordinary differential equations which can be used to
compute the second derivatives of the travel time field along any known ray. The ray itself
can be evaluated by arbitrary methods. Due to the role of these ordinary differential equa-
tions in the computation of dynamic characteristics of seismic waves, we shall call them
dynamic ray tracing equations or dynamic ray tracing systems. For simplicity, we shall con-

sider only a 2-D medium.

L et us emphasize that the dynamic ray tracing can be used to determine the geometri-
cal spreading by the computation along just one ray, there is no need of the computation of
the ray diagram and evaluation of geometrical spreading by the direct measurement of the

elementary cross-sectional area of the ray tube from the ray diagram.

Dynamic ray tracing is closely connected to the computation of Gaussian beams (see
Cerveny (1981)). In case of Gaussian beams, the second derivatives become complex-

valued. This will be described elsewhere.
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2. Ray Centered Coordinates

Let us select an arbitrary ray {) and introduce an orthogonal coordinate system

(s,n), (1

connected with this ray, see Fig. 1.

FIG. 1. ray

The coordinate s measures the arc length along the ray from an arbitrary reference point,
n represents a length coordinate in the direction perpendicular to ) at s . The basis of

Y

the new coordinate system is formed by two unit vectors £ and 7 , where f is the unit
tangent and 71 the unit normal to the ray (). Let us now consider a point S(s,n) in the
neighborhood of the ray (). The position vector #(s,n) of the point S can be determined

by the relation
#(s,n) = #(s,0) + n A(s), ¢-))]

see Fig. 2.
Now we shall prove that the system (s,n) is orthogonal. To do this, we first find the
expression for the infinitesimal length element dI in the coordinate system (s,n),

dIi?® = dif d7¥ . For d# , we simply obtain from (2),

dr (s,0) ds +n drni(s)

dit =
4 ds ds

ds + 1i(s)dn.

Using the definition that d7(s,0)/ds = { , the equation for d7 can be rewritten as

follows,
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FIG. 2.

dr(s)
ds

dif = t(s)ds + n(s)dn + nds . (3)

To find the final expression for d# , it is necessary to determine d7(s)/ds along the ray.
It would be possible to use some equation from differential geometry, but we shall not do it,

we shall derive all equations here. This will make the whole derivation more clear.

As f and 7 are two unit mutually perpendicular vectors, it holds 7#-7#4 = 1,

#A-f =0. Differentiating these equations with respect to s gives
i L df

= -1 —

‘ds ds

-»d'fl’,_ g
'nds—O, t

&

It follows from the first equation that dri /ds is a vector in a direction of £ (it has no

component of 7 ). Thus we can write

dn

= —k(s)f 4
s (s)t, (4)
where k(s) is some function of s, not yet determined. The sign "-" was chosen for con-

venience. It follows from the second equation and from (4) that
— d{
e v 4'
k(s) = 7 (49

Thus, we have rewritten dn/ds in terms of df. / ds . This is now much better, as the

derivative di"/ ds can be simply determined from the ray tracing system. We remember
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that the ray tracing system has the form

@ _ s ap _ _ 1
dS—Vp, e IﬁVV.

-

where V = WV(z,2) is the propagation velocity and © is the slowness vector

B = trv. Inserting g = £/ V into the second ray tracing equation gives

(5)

In our ray-centered coordinate system (s,n) we have ¥V = V(s,n). In the following we

shall use the following notation

V(s,n)

v = ¥(s,0), U,y = an

(6)

n =0

Thus, v and w,, are measured directly on (1, they are functions of s only, not of n .
Using these symbols simplifies the following equation. In this notation, equation (5) can be

rewritten as follows

k(s) = - - (59
Inserting (4) and (5”) into (3) gives
dF = R £(s)ds +A(s) dn, (7
where h is given by the equation
U,
h =1+ U" n . (8)

Then we obtain easily for dI? = di-d#
di® = d# dif = hPds? + dn? .

Thus, we can see that the expression for di® contains only terms with dn? and ds?, not
with ds dn . This means that the ray centered coordinate system (s,n) is orthogonal,
with scale factors (h,1) . Taking this into account, we can simply rewrite any vectorial dif-

ferential equation in ray centered coordinates. For example,
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Vr = ——1 + —n ., (9

It just remains to say that the quantity k(s) introduced by (4) represents the curva-
ture of the ray. This follows immediately from the Frenet’s equation from differential
geometry. In the following, however, we shall not work with the curvature of the ray, the

expression (8) is more suitable for us.

Note that in case of a curved ray {)} the system of normals constructed to ()} can
intersect mutually at larger distances from (). In other words, the ray centered coordinate
system (s,n) is not regular at large distances from (). In the following, we shall consider
only a region along () at which the ray centered coordinate system (s,n) is regular and

call it ""the regular region".

3. Eikonal equation in the Ray Centered Coordinates

From (9), the eikonal equation V7-V7 = 1/ V?(s,n) in the ray centered coordinates

(s,n) is

2
1

h2

or

os

1

VE(S,TL) ’ (10)

on

® s
+[;

where V(s,n) is the propagation velocity. We shall restrict our attention to the immediate
vicinity of the central ray (1, which is characterized by small values of n . Note that
8r/0n = 0 at (, as the wavefront is perpendicular to the ray. Thus, the Taylor expan-
sion of the phase function 7(s,n) in the neighborhood of ()} consisting of terms up to the

second order in n is

L
2

oRr(s,n)

. R~ ,0) +
Hs;n) ~ 1(s,0) e

n? . 11)

n =0

We define

2 .
on n=0

The function M(s) represents the second derivative of the travel time field in the direction
perpendicular to (). This is a quantity we are interested to know. Using the definition, we

write

(s,n) & 7(s,0) + %—M(S)nz. (12)
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From this we get easily

67‘(;‘;71,) ~ d.'rfiss,O) + ;_gi_ﬁiii n?, (13)
8rsm) & j(s)an . (14)
on
It is clear that

67(655’0) = v(15) ’ (15)

Equations (13) and (14) can then be written in the form
QT(—;S’H—) R l—+ —;—-M,snz, (16a)
orlsm) R Mn . (16b)

on

In (16a), we have used a commonly accepted notation for derivatives, M,, = dM(s)/ds .

This notation will be used throughout this paper to shorten certain equations.
Now we shall find a similar expansion for 1/ V3(s,n), see (10), in the neighborhood of

Q (for small n ). We have

V(is,n) "R v +v,,n + 1—'u,,m n?, 17

2

where v,, is given by (6) and wv,,, by the equation

R V(s,n)
GTLO , (18)

Thus, v,, and w,,, are again functions of s only, not of n . Taking into account (8), we

v mn

can write (17) in the following form

~ 1 2 Yonn_ 2y o Umn_ 2
V(s,n) & vh + > VT vh{(1 + 2ok n?) vh {1 + >0 n* |, (19)
From this immediately follows
1 1 Vsnn 2
S 1 - 22 pn2l
o) 22 A ] (20)

Now we return to the eikonal equation (10). We rewrite it,

a7 |? _ h?

|  VRsmn)

6'r2

+ P
os
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Inserting (8), (16) and (20) into this equation, we obtain, with the accuracy up to the

second order terms in n ,

viz—[1 + vl yn?) + HPn? = 1—[1 - ”’—ﬂnz] . (21)

4. Dynamic Ray Tracing Equations

As we can see, the terms A at both sides of (21) cancel each other. Then we

v
obtain from (21)
ds u?

This is the final equation for the second derivative of the travel time field 3/(s). From a
mathematical point of view, (22) is an ordinary non-linear differential equation of the first
order of the Ficcati type that, in general, cannot be solved by analytical techniques. It can

be, of course, solved numerically without problems.

The Riccati equation (22) can be rewritten in many other forms. We shall present here
two other forms, which are especially useful in the investigation of Gaussian beams. Their
advantage by comparison with (22) is that they are linear. This substantially simplifies the

evaluation of the complex solutions of (22).

We introduce a new function g(s) by the relation

1
M(s) = o Qs - (23)
Then we obtain
dM(s) 1 1 1 1
ds = - 2 Vss E‘q’s - 'qu qss? + vg Qsss -

Inserting this into the Riccati equation (22) yields

1 .. 1 1 o Vipn _
w%q Vss Gos — ?qm + og T + ;}q_zq’s e 0.

As we can see, the two terms with q,E cancel each other, and we obtain a linear equation

2
vEL -0, Bt g = 0. (28)

This is an ordinary linear differential equation of second order. This is another form of the
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dynamic ray tracing equation. When we solve it and determine ¢ and g, , the second

derivative of the travel time field is obtained from (23). Equation (24) can also be rewritten

d |1 dg
ds|lv ds

We shall now present what seems to be the most useful form of the dynamic ray tracing

in a more compact form

v,
+ —%—q =0

(25)
v

equations. We introduce a new function p(s) by the relation

- 1 ; _ pls)
p(s) = (&) g,s» 1t M(s) g(s) (26)

Then, we obtain from (25) and (26) a dynamic ray tracing system in the following form

(27)

Thus, we have arrived at two simple linear ordinary differential equations of first order. We

may write them in a more convenient matrix form as

aX

= CX,
I (o (28)

where X as a column vector and C is a square 2 x 2 matrix,

q 0 v
X = R C = (29)
p Vsnn 0
e
v

To complete the dynamic ray tracing equations (or systems), it would be necessary to
derive the initial conditions at a source and at interfaces. It would be also useful to learn
more about physical meaning of the quantities M,p,q, about their relation to other impor-
tant quantities (curvature of the wavefront, geometrical spreading, etc) and discuss their

possible applications. This will be done elsewhere.
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6. Concluding Remarks

The above shown dynamic ray tracing equations and systems for an arbitrarily lateral
inhomogeneous media were first derived and investigated in a slightly different form by
Babich et al., see e.g. Babich and Buldyrev (1972) and other references given there. They
used the ray centered coordinate system and the dynamic ray tracing to study the solution
of the wave equation concentrated close to rays (Gaussian beams) and in connection with
the theory of resonators. The ray centered coordinate system was introduced to seismology
by Popov and Psenéik (1978a, 1978b). Popov and PSendik used the ray tracing systems to
determine the geometrical spreading and ray amplitudes of seismic body waves along a ray.
(See also Cerveny, Molotkov and Psendik (1977), Cerveny and Pdendik (1979), and
Cerveny (1981).)

In a 3-D case, all the dynamic ray tracing equations are very similar, only the quantities
M,p, and g have a matrix form ( 2 x 2 matrices ). See more details in Cerveny and Hron
(1980), Hubral (1980), Hubral and Krey (1980), Popov and PSenc&ik (1978a, 1978b). The
derivation of dynamic ray tracing equations presented here follows in principle the paper
Cerveny and Hron (1980), but several steps are considerably simplified. From this point of

view, the derivation of these equations presented here is hew.
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