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Chapter 1V: A Born Inversion Method For Elastic Wavefields

Abstract

The inversion of two-dimensional elastic displacement fields can be handled in a
manner similar to the acoustic problem. The Born approximation of the Lippmann-
Schwinger equation yields a simple relationship in the Fourier-transform domain between
the observed horizontal and vertical displacement fields, and the scattering potential.
Basically, the observations are a linear combination of the scattering potential evaluated
along four different shells. The four shells may be interpreted P - P,P - 8§, S » P, and
S - S scattering.

If the source is either purely compressional or purely shear, then one experiment will
suffice to invert the forward equation. If the source is a (known) mixture of P and S
components, then two experiments with different combinations of P and S8 components
are necessary for the inversion.

4.1 introduction

In Chapter Ili, the Born approximation was used to relate the "reflectivity' function
to the density and bulk-modulus variations. Here the same is applied approach to the
two-dimensional elastic problem. In this case there is a substantial advantage in deter-
mining the form of the reflectivity because there are four reflectivity functions, but only

three medium parameters.

The field experiment necessary for the inversion method presented here is a stan-
dard muiti-offset reflection survey with two components of displacement (radial and
vertical) recorded at each geophone location. It is (apparently) necessary to cast the
elastic inversion method in terms of displacements because exact wave operators for

variable media can only be cast in terms of these variables.

The use of the Born approximation will force several restrictions on the procedure.
Basically, the background P- and S-wave velocities must be nearly constant. The inver-
sion scheme is limited to sub-critical reflections, and it has no provision for handling mul-

tiples.
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4.2 The Forward Scattering Equation

The starting point of the derivation is the two-dimensional elastic displacement

equation for a linear isotropic medium!

Lu=(8,40, +08,B8, +8,B78, +8,C 8, +pu?)u=0 (4.1)
where
_PA+21 0O 0 u Y
=l o wp = o) 0 A2u

and u is the displacement vector (u,w)”. This is the most straightforward form of the
operator, however, for the derivation here, it is convenient to rewrite the operator in an

equivalent form

L=V

7 0l _, O ul r[0 &

where V and H are the operators

H + po?I (4.2)

V=

az —az
P

and y = A+2u. Note the normalizations for the operators V and H
VIV=VVl =(8,4 +0,,)] =VR] and HT H=HHT =8,8,]

This form of the elastic displacement equation has a number of advantages. First, if
the shear modulus is constant, the terms involving the operator H annihilate each other,
and the resulting equation is very similar in form to the scalar displacement equation.?
Second, as will be shown later, the term involving the operator V will give rise to primary
scattering (P » P, and S - S), while the terms involving H generate converted scattering
(P - S, and S » P). This implies that the converted scattering is primarily governed by

the shear modulus.

The operator V7 acting on the displacement field produces the divergence and curl
of that field, which means that it converts displacements to potentials. The operator V

acting on the potential variables produces displacements.

'Here 0z and 0, are the parial derivatives with respect to = and 2.
2The scalar equation referred to is the SH displacement equation (pwz + V',u \% )u = 0.
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In chapter Il, the Born approximation of the Lippmann-Schwinger equation was

stated to be
G=G + G, VG, (4.3)

where V = L — [,. This equation is valid for the elastic case, if we realize that the

Green’s operators, and the scattering potential are dyadics.

The problem which we will perturb about is the one for which the wave operator is

s O
La=pow2+Vr:) Mo] v (4.4)

Hence, the scattering potential is

Y7 O
0 i,

0
vT +2HL g

0
V= (p=po )Pl +V HT — 2HTL g]H (4.5)

For convenience we will define the dimensionless parameters

a1=L—1, azzl-—1,and a3=L—1.
Po - 7o Ho
As with the scalar inversion, we will concentrate on finding the dimensionless functions
above, and not worry about reconstructing the actual medium parameters. With the

above definitions, the scattering potential becomes

ofa, O
0 BPag

0(13

0
T . T
a, o|H" —26°H

V=p,la,0? +V v+ 282H o

Qa3
0 H (4.6)
where ¢ and 3, defined as
o= Yo and g = \/ £o
Po Po

are the background P- and S-wave velocities.

In this chapter, we will not consider the presence of a free surface.® Instead, we
will stop the medium above the datum from scattering by assuming that the g;(z,2) zero

for 2 <0.

SThis is a more significant assumptlon in the elastic case than the scalar case because we neglect mode
conversion on the free surface. Also, in the elastic problem It is not possible to simulate a free surface by a
finite combination of free space Green's operators.
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For a point source, the observed reflected wave field is related to the scattering

potential by
D(zy,z5,0) = G, VG, FS(w) (4.7)

where F is a two-component vector representing the relative source strengths in © and

@, and S(w) is the transform of the source time function.

4.3 The Scattering Equation in the Frequency Domain

Equation (4.7) has a more useful form in the Fourier-transform domain. Transforming

over z; and =, we have
Dlkg ks ) = <kg|zg><zy,0| G |',2' > <2’ 2" | V]x",2" >
<z'",2" | Gy | x5,0> <z | ks >FS(w) (4.8)

Substituting directly from Appendix A we have
—_ _1 1 N ' ' 10 1" ik, &' —iy Iz'l _1.'7’ |Z’|
D(ky,kssw) = ﬁaz—c‘?fdz’ fdz fd:r fdz e ¢ L4ge g + Bge g ]

—tvg |2 |

Va2 |2 2") e (40 +Be ) msw) @)

where we have made the following definitions (from Appendix A)

21.2 2. 2
v = V(]Cz,&)) = a_ 1 - CHL n= n(kzsw) = ﬁ_ 1 - wzz 3

W)
_ 1 [z V|1 O] ks v
and
B = Blk,,n) = — r(z 0 O ke n] (4.11)
- z’n—gnkz01_nkz )

The subscripts g and s in equation (4.9) identify the horizontal wavenumber (kg or k) to

be used in the above definitions. Hence,
vg = ulkg,w) Ve = vlks,w) ng = nlkg,w) ns = kg, )
and

Ag = A(kgyug) As = A(ksyus) Bg = B(}Cgang) Bs = B(ks’ns)
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The operator A selects the compressional components from the displacement fields.
It accomplishes this basically by converting into potential variables, selecting the P com-
ponent, and then reconverting to displacements. The A operator applied to a purely shear
field produces a zero result. In a similar fashion, the 5 operator selects the shear com-

ponent of the displacement field.

Since V(z',2' |z"",2") is zero for either 2' < 0 or 2" < 0, the absolute signs in equa-
tion (4.9) may be dropped. This allows us to identify each of the terms in equation (4.9)

as a four-dimensional Fourier transform over z', 2', z'', and 2. Hence,

D(kg:ksaw) = - pi% Ag V(]Cg"‘f/g I kssVs)As + Ag V(kg,_Vg lksans)Bs
0

By Vlkg,—ng | kg ve)As + By Vikg,—ng | kgims)Bs | F S() (4.12)

Thus, the observed data is a linear combination of the scattering potential evaluated
along four different hyper-surfaces or ''shells’. By noting the positions of the 4 and 7
operators, one can identify what type of scattering each shell contributes. For example,
the first term involves the operators 4, and 4, which means that it is P » P type
scattering. The next three terms in the sum are respectively S - P scattering, P - S

scattering, and finally S » S scattering.

4.4 Inversion of the Scattering Equation

The next logical step is to substitute the Fourier transform of the scattering poten-
tial given in Appendix B into equation (4.10). However, since the scattering potential is a
sum of three terms, and it appears four times in equation (4.10) with different argu-
ments, we will simplify things first. We will do this by making some assumptions about

the nature of the source.
If the source were purely compressional then only two terms in equation (4.10)

would be non-zero. Hence,

27
po

Dp(kg,ks,w) = - Ag Vk y Vg | kg Ve )A, + By V(kg,—nglks,us)As S(wX4.13)
where Dp is a two-component vector containing the horizontal and vertical components

of displacement due to a compressional source.

We can further simplify the problem by exploiting the highly structured from of the
operators A and B. It is clear form equations (4.10) and (4.11) that both A and B have

a zero eigenvalue, and that it occurs in opposite positions (the 22-position for A4, and the
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11-position for F). Premultipling either 4 or B by the eigenvector that corresponds to
its zero eigenvalue will annihilate the operator. The operators (which are the appropriate

eigenvectors of 4 and )
ep = [kgmg]” (4.14)
and
es = [—vg.kg]7 (4.15)
have the properties
epBy =0 and eg 4 =0

The operators ep and eg have, as one might expect, the form of a divergence and a curl

operator, respectively. Applying these operators to equation (4.13), we have

Dpplky ks ,) = ep-Dp = — ’%ep-[f;g Vlkey,—v, Iks,r/s)As] S  (4.16)
0

and

Dspliey kg ) = eg-Dp = — ;f—ngeS-[Bg Vikys 1, |Ics,vs)As]S(w) (4.17)

We have now reduced the problem to the same level as was discussed in Chapter HI|

on acoustic inversion. To proceed from this point one would transform equations (4.16)
and (4.17) into midpoint-offset coordinates, and make a change of independent variable
k., = —vg —vs for equation (4.16), and k, = -y, —n, for equation (4.17). Then after
determining the coefficients of the scattering potential given in Appendix B in the new

coordinate systems, one could least squares fit for the unknowns {a;].

If the source were purely shear, then the other two terms in equation (4.10) would
be the ones that are non-zero. The reduction to two scalar problems is similar in this

case.

If the source is a mixture of P and S waves, then two experiments will be required
to separate the various contributions. For example, if the source has compressional and
shear strengths of p, and s, for the first experiment, and p; and s, for the second, then

the observed wave fields would be
Dy = [pl[Ag VA, + B, VAs] + slpg VB, + B, VBSH S(w) (4.18)

Dz = [pa{ay Vi + By VA) + 52(ay VB, + By VB)| S(0) (4.19)
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For brevity we have omitted the constants found in equation (4.10), and the arguments
of V and D. By applying the divergence and curl operators we can reduce these equa-

tions to
ep D, = [pl epAg VA + 5, epd VBS} S(w) (4.20)

ep'Dy = b)g ep'Ag VA, + 52 ep'Ag VBS] S(w) (4.21)

and a similar set for the eg operator. Solving for ep'4; VA, S(w) and ep-4; VB, S(w) we

have
ep A, VA, S(w) = (4.22)
p g Vs 8oy — 8P
and
ep'Dy —pep'D
ep-4, VB, S(w) = Pgep /)y —pPi1€p' g (4.23)

P28, —P1Sg

As long as p ;53 ¥ pps; the problem can be reduced to the scalar case.

Conclusions

The constant background Born inversion scheme presented in Chapter Hl can be
extended to the two-dimensional elastic problem. The observed data field is a linear
combination of the scattering potential evaluated along four shells. The four shells

correspondtoP - P,P » S, S » Pand S » 8 scattering respectively.

To invert the forward, for the case of a general source, it is apparently necessary

to conduct two experiments with different source radiation patterns.
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APPENDIX A: The Green's Operator For A 2-D Elastic M edium

The equation defining the Green’s operator for the 2-D elastic case is
o® 0
o #
where V is defined in equation (4.2). Fourier transforming over z and z in equation
(4.A1) we have

Po |l +V vilG, = -6(x—=x') 6(z —=2') (4.A1)

0 ~J — . P
po le?I + 7 o 32] vIlG, = E;T—e”‘ﬂ i (4.A2)
where
$ . tx k.
ke K
This equation may now be solved for (;
! 0
1 - O(z(kz -U)(kz+V) ~ ev‘k,z’ +ik, 2
G, = v Vi 4.A3

B3k, —m)key +7) |

where

T ez T 22
W \/ o kz %) \/ 6 k::
= = 1 - and = = 1-

The domain in which we will use the Green’s operator is the (z,k.,w)-domain.

Inverse transforming over k, we have

1
0
. fdk ok, —)(ky +1) or eikzz'ﬂk,(z'—z) A
° (217)3’2 0 1 k2+k2 ‘

Bk, ~m) e, +7) |

This integral can be easily evaluated by contour integration in the complex k_-plane. For
the exploding Green’s operator we choose the pair of poles that makes k,(2'—2z) < O.
To satisfy the radiation condition, the contour is closed in the upper half-plane for
(z'—2) > 0, and in the lower half-plane for (z'—z) < 0. Using the residue theorem we

have

% L [1 0]y, e—iu]z'~zl
a -2y

0 0] g inlz -~z
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where

~ k, —v
Voa=1

2] . kz _77
and Vﬁ =1

v kg n kg

The first term in the Green’s operator depends only on the compressional velocity
(), while the second depends only on the shear velocity (f). This leads to a natural

definition for the two terms

ie ik, x'

e [aemwiet + peimiz] (4.A6)
Po @

<k;0| G, |z',2'> =

where

o fro
A—2yva00

~

T -~ T
Vo( and B = gVﬂ [0 1 Vﬁ

The other Green’s operator that we need is the one transformed over the input set of

variables

. ik, T
ie *

<z',2'| G |k;,0> = —————
| Gy | ks (_27Tp°w2

e 4 Be ~m|z|] (4.A7)

APPENDIX B: Fourier Transform Of The Scattering Potential

The scattering potential may be written as an operator in the form

2 , (Xzag 0] )
Wz x") = a0l +V 0 flag
10 sl . 79 28|
+28°H |, o |HT —26°HT|, o |H| 6z 2" (4.81)

We now Fourier transform over z* and z'', and integrate (trivially) over z'':

1 " . ofa;, O
. ik ,
Vik k") = om? fdx e a0/ +V 0 flag
o |0 %8| . P S ) N
~ik"-z
+28°H |, o|H —28*H as 0|H|® (4.B2)

We now integrate the second through fourth terms by parts to reverse the order of the

leading operators and the exp(ik”z’). This allows us to write down the Fourier
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transform by inspection:

1 2 txzag o} op
V(k ,k ) = W (llw I - V ) ﬁzas Y
2y 0 Qg - S 0 Qg .

where a; = a;(k"—k").

The various terms in a; can be collected together to produce a final form for the
scattering potential

rd » " 17 — &)2 az ; ké' kz’ ké’
Wiz kz | kz Ky ) = e |1 I+a; o7 Koky kpky
2 k;k, k ik, ~2kik;




