-81 -

Chapter VI: The Choice of Variables For Elastic Wave
Extrapolation )

Abstract

The choice of variables for elastic problems determines the form of the one-way
extrapolation equations. Three sets of variables are considered: displacements, poten-
tials, and a mixed set of variables which eliminate troublesome 9., terms from the full
wave equation. The displacements satisfy boundary conditions at internal interfaces but
presently lack a recurrence relation to generate higher order approximation. The poten-
tial variables (P and S waves) appear to have problems similar to those of the displace-
ments for variable velocity media, because the equation contains a complicated term
which is difficult to factor into up- and downgoing waves. The mixed set of variables
have the desired recurrence relation but fail to satisfy the boundary conditions. They
also appear to be unstable for variable medium parameters.

6.1 Introduction

In this chapter the choice of state variables for the modeling of elastic waves by
extrapolation with one-way wave equations is discussed. One use of such extrapolation
operators is in the migration and inversion of elastic wavefields. The main concern in
migration is that the reflectors be placed in their correct positions, and usually the accu-
racy of the amplitudes is not of primary importance. However, with a little more care in
the way medium variations are incorporated into the extrapolation operators, one should
be able to achieve accurate amplitudes as well as accurate traveltimes. This means that
one may consider using extrapolation methods to provide solutions to forward modeling
problems, such as refracted body waves and surface waves. In Chapter V, the extrapo-
lation of scalar wavefields was presented. Our goal is to extend the scalar methods to
elastic wave problems. The first step is to settle on a set of state variables for the
problem. With the scalar wave equation, the question of the choice of state variables
does not arise because the wave equation is already in its simplest form. For acoustic
waves a pressure {or potential) variable is used, and for SH-waves a displacement vari-

able is used.

For elastic extrapolation there are several choices of variables. The first is the
displacements themselves, which are governed by a coupled vector wave equation. For
the constant velocity elastic wave equation, the most obvious choice of variables are

the potential variables (P and S waves), which convert the coupled vector equations into



-82-

a pair of uncoupled scalar problems. Another choice is a set of mixed variables (''mixed"
for lack of a better name) that transform the equation into one that looks like a scalar
wave equation with matrix coefficients. In the sections that follow, we will discuss the

relative merits of each type of state variable.

6.2 Displacement Variables

In elastic theory three types of variables are usually discussed: displacements,
stresses, and potentials. If one also happens to be interested in differential operators,
then displacements will be the fundamental set because both stresses and potentials
are expressible as first order differentials of displacements. Thus, it is particularly easy
to transform the displacement solution into stresses to apply boundary conditions, or into

potentials (P and S waves) for interpretation.

The problem with displacements is that the full operator (for constant density)!

(8,408, +0,88, +8,B78, +08,C 08, +w?)u =0 (6.1)
where
w horzontal displacement
u = ['w] = lertical displacement
and
g o o g a® 0
A% lo o2 B 7 |az-2p2 0] 3= g g

contains both first and second order differentials in z. Consequently, the formal factor-

ing of the operator into one-way equations is
(6, + Dl)(az - Dg)u = 0. (6.2)

If the first order differentials were absent in equation (6.1), then D; would equal D,, and
the situation would be a lot simpler. Expanding equation (6.2) and matching it to a con-

stant velocity form of equation (6.1) leads to the constraints
Dy =Dy =iA"Y(B + BTk,
and

lin this chapter 0, and 0, denote partlal derivatives with respect to Z and 2.
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DDz = AN CkE — IeP)
Solving for D, and D, we have the quadratic equations
D} —ik,D\A™Y (B + BT) + A7'(JP? - k) =0 (6.3)
and
DE +ikzA™Y(B + BT)Dy + A7'(Jo® — Ck2) = 0. (6.4)

Thus, in order to build up a sequence of approximations for one-way displacement opera-
tors, the recurrence relation has to solve a quadratic rather than the simpler square root
of scalar theory [c.f. equation (4.9)]. We have not been successful in finding such a
recurrence relation. The chief difficulty seems to be that the D matrices in equations
(6.8) and (6.4) do not commute with either 4, B, or C.

At present there exists exact expressions in the (2,k,,w)—domain for the opera-

tors D, and D,

2
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Dy = k2 + v, w?vg
z OB ez va(vy—vp) 2
a
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2
Ay
. - 52“ ke vg(va—vp)
i
D2 = — 2 (6.5)
2 w v
kz + Vaup kz Ua(Ua"l/p) — 2ﬁ
o1

where v, = \/w_z/az——kf and vg = m A second order approximation to the
extrapolation operators can be obtained by expanding the square roots in equation (6.5)
in a 2™ -order Taylor series (Clayton and Engquist, 1977). However, from scalar theory
we know that higher order approximations obtained by further Taylor series expansion

will lead to unstable operators.

If a recurrence relation for displacement variables seems so difficult to obtain, the
obvious question is why bother with them? The answer is that of all the variables con-
sidered in this chapter, they come the closest to satisfying the internal boundary condi-
tions. The boundary conditions for an elastic medium are continuity of stresses and dis-
placements. For an interface parallel to the z —axis, these may be written as (for con-

stant density)
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u

a8, (a?-28%)3,
0z 820,

=0 and [u ] =0. (6.6)

where the square brackets denote differences across the interface.

For a plane wave traveling in z —direction, the dominant term in the one-way
approximation, as far as the boundary conditions are concerned, is £d., where £ is
determined by matching the dispersion relation. If we write this as £,8, F50, the implicit

boundary conditions are
[u] =0 and [Ezazu] = 0.
Thus if we choose £, = E5'F and

o2 0
Oﬂz

E2=

we will satisfy the correct boundary conditions [equation (6.6) with 8, = 0]. If the
wave impinges at some other angle of incidence, then other terms in the one-way opera-

tor become significant. This case has not yet been analyzed.

In summary, displacement variables lack a recurrence relation to generate higher
order approximations. However, since the stresses can be obtained from first order dif-
ferentials of the displacements, they have the potential for matching the implicit boun-

dary conditions.

6.3 Potential Variables

The displacement wave equation in a constant velocity medium can be diagonalized

(decoupled) by introducing potentials of either the form

u=VP+VxS,
or the form

P =Vu and S"=Vxu.
The two are equivalent in the sense that
P = —%P and S = —w—:—S,

a g

Consider writing equation (6.1) in the form

(H-J)u=0
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where H is the homogeneous part (or constant velocity part) and J contains all the
velocity variations. Conversion of this equation to P and S potentials amounts to

diagonalizing the operator /. Defining the diagonalization as
QH Q= (0, ~ M) and p = [§] = ¢7lu,
the equation becomes
(8. — A2 - Q7'J Q)p =0.
We may formally factor the problem as
(8, +NB,-Np =@ 'J @p. (6.7)

The right-hand side can be considered as a source term for the homogeneous operator on
the left. The problem is sorting out what parts of the source term to retain. It is obvi-
ous, by the way the operator is factored, that the left-hand side contains waves moving
in both directions in 2. What is not so obvious is that the right hand side also does. It
contains reflection and transmission coefficients for both types of waves. It is important
to eliminate the backscattering components from the source term. For example, if we
inadvertently retain a reflection term for a backscattered wave, the extrapolation

operator will start a new wave moving in the extrapolation direction.

The operator @ !J @ is more complicated than the displacement equation itself.
Thus, by transforming to P and S waves, it would appear that the problem has become

more complicated.

6.4 Mixed Variables

The equations of motion for a two-dimensional elastic medium in Cartesian coordi-
nates can be written as five first-order partial differential equations in the variables
1/ p)Tez, (1/ )T, (1/p)T,, (nOrmalized stresses) and u, w (horizontal and vertical
displacements) (Claerbout, 1976, p.182). By eliminating the variable (1/p)7 and dif-
ferentiating two of the resulting equations by z, these equations can be written as a 4

by 4 system of equations in the following form:

8 Ir
dz S

where r=[ d,u,(1/p)7,, 17, s=[ w, (1/p)0,7,2 17, and the matrix operators A and

0 A
B O

r
S

(6.8)

B are given by
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TABLE 6.1. The coefficient matrices for four of the mixed variables are given in the
table. In the first column are the state variables. The second and third columns are the
coefficient matrices of the wave equation given at the top. The last column is the
transformation operator which converts P and S potentials into the given variable.
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In equation (6.8), and in the following discussion it is assumed that the density p and the
compressional and shear velocities ¢ and g are constants. The structure of equation
(6.8) allows us to construct a second order differential equation for r

62

azz'r':AB'r

In a similar manner, a second-order partial differential equation in the variables
[0,w and (1/p)T,,] can be derived. Another possibility is to begin again with the five
first-order equations of motion and eliminate all variables except the normal stresses 7,
and T7,,. This results in another second-order partial differential equation describing
elastic wave propagation. The property common to all of these second-order wave

equations is their form. Each can be written in the form
02,9 = (Mlatt + M28..)q (6.10)

The interesting thing about equation (6.10) is that it contains no cross-derivatives (3,
terms). Other than the fact that 4/, and ¥, are 2 by 2 matrices, and g is a vector with
two elements, the form of (6.10) is identical to the scalar wave equation. In Table 6.1,
we give the matrices M, and M, and the state variables g for four differential equa-
tions that have the form (6.10). In addition we include the matrix operator @ which can

be used to diagonalize equation (6.10). By making the change of variables
§ = Qg (6.11)

equation (6.9) becomes a decoupled system (i.e. transform it to P and S variables). Note
that both @ and @~! have an z —dependence of the form 38,, (or equivalently k2). This
means that both the forward and inverse transformations can be implemented with a tri-

diagonal operator in the (z,cw) domain.

The fact that equation (6.10) looks like the scalar wave equation is what makes
the derivation of the corresponding one-way wave equations so simplé. For conveni-

ence, let us Fourier transform (6.10) over ¢ to obtain
8229 = (—®M, + MzkP)q (6.12)

One-way extrapolators can now be formed by taking the square root of equation (6.12).

aaTq =15, ¢q (6.13)

where S, is the n** approximate to the exact square root ~\/—w?}M, + M8,,. The

square root approximations can be generated by a slight generalization of Muir’s
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recurrence relation
Sp = —twM{IZ + (—twM{”® + S, )7} M20,z, So = —twM{”# (6.14)

Operating on both sides of equation (6.14) will confirm that S, converges to the exact

square root as 1. »x,

The dispersion relations for the "mixed" set of variables can be determined by find-
ing the eigenvalues of the operators S,. In Figure 6.1, the dispersion relations for the
state variables [8,u , (1/p)7;,]T are shown. The results are similar for the other state
variables. By graphical comparison the dispers'ion appear to be identical to the

corresponding scalar equations.

| ke

FIG. 6.1. Dispersion curves for one way elastic wave equations in the variables
[8;u, (1/p)7,,]1". The solid line is the first order approximation; the short-dash line is
the second order; and the long dash line is the third order.
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FIG. 6.2. An example of extrapotation with the first set of mixed variables listed in Table
6.1. The initial conditions were constructed from a point source that is equal strength in
both P and S. The Q transformation given in Table 6.1 was then applied to provide initial
conditions for the mixed variables. The top two panels show the extrapolation using the
mixed variables. The bottom two panels show the results of transforming the solution to
P and S. The P and S results are virtually identical with those obtained by scalar extra-
polation.

The one-way elastic wave equations that we have derived in this section can be
useful to us only if they are stable. Moreover, if we are interested in accurate modeling
of elastic wave propagation, we would like the equations to be unconditionally stable and
to mimic the proper reflection and refraction effects for elastic waves at internat inter-
faces. We have done some numerical experiments that show that we can find one-way
equations in any of the variables mentioned in Table 6.1 that are stable for the constant
coefficient case. Figure 6.2 shows the results of one such calculation. In this figure,
the the state variables g = [8,u, (1/p)T,,]7 were used. The initial conditions at z = O

corresponded to the analytic solution of the full elastic wave equation for a point source
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of equal strength in P and S placed above the top of the plot. An implicit Crank-Nicolson
method was used in the finite differencing. The top two plots show the solution in the
variables 8,z and (1/p)T,,. The bottom two plots show the solution transformed to P
and S. The main thing to note is that the solution is stable. Figure 6.4 shows similar
plots, but this time a vertical velocity interface was placed in the medium slightly to the
right of the point source. The discrete L;—norm of the solution grew exponentially in 2z,

indicating that the equation is unstable. This is apparent in the figure.

FIG. 6.3. This figure shows an example of an instability in the the mixed variable extra-
polation. The top panel show the extrapolation using the mixed variables listed first in
Table 6.1. A vertical interface with a 30% velocity contrast is located just to the right
of the point source. The waves transmitted and refiected by the interface are growing
exponentially. The bottom panel shows the solution transformed toc P and S waves.
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We now believe that all such equations are probably unstable for the case of strong
lateral velocity variation. Determining unconditionally stable approximations to differen-
tial equations appears to be closely related to the idea of finding difference approxima-
tions that produce reasonable reflection and transmission effects at internal interfaces.
If the reflection and transmission coefficients are of reasonable size, then the solution
will not blow up when energy strikes the interfaces. As long as we are going to require
that the method yield reasonable reflection and transmission coefficients, we might want
to require that these coefficients be good approximations to the reflection and transmis-
sion coefficients for the full elastic problem. This seems to be where the biggest prob-
lem is with all the variable sets given in Table 6.1. It appears that it is not possible to
write down conditions that are equivalent to the requirements that all stresses be con-

tinuous at an interface using only the two variables in each set.

The difference approximation used to produce the piots in Figure 6.3 was one which
implicitly specified the conditions that ¢ and 8,q be continuous across the vertical velo-
city interface. It is fairly simple to calculate explicitly what the reflection and transmis-
sion coefficients are for these interface conditions. It is conventional to calculate the
ratio of the reflected and refracted P and S wave amplitudes to the incident P or S wave
amplitude. So we need first to transform from the variables q to the potential variables P
and S. Finding the potential variables amounts to diagonalizing the wave equation
(6.12). Define a diagonal matrix A, by

A = Q7'MQ (6.15)
Then if we define new variables § by
g = Qg, (6.16)
equation (6.12) becomes
2~
99 _ A% = o (6.17)

9z?

We will only calculate the reflection and transmission coefficients for an incident P-

wave. A plane incident P-wave has the form
do =[A expik,2 + k4 z), 017,

where k, is the horizontal wave-number of the incident P-wave in the first medium. The

reflected wave will have the form

qr = [R, expilk,z — kaz), Ry expilkzz — kg z)],
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and the refracted wave will have the form
gr = [Tp exp ilk,z + kg,,2), Ts exp ilk,z + kg,z)]" .
Here I‘c‘la is the horizontal wavenumber of a P-wave in the second medium, and k 8 and

I«:p2 are the horizontal wavenumbers of an S-wave in the first and second medium,

respectively. The interface conditions that g and 8, g be continuous across an interface

at z = O can be written in terms of ™! and q, g and g7:
@7'% + @'gr = Q7'9r
and Q7'0;9, + @710, = @7'9.9r. (6.18)
Let us take as an example the variables ¢ = [8,w, (1/p)7;;]7. @ !is given by
L L{—wz—zﬁzau a,,]
= 7 -28 1

Letting a = [4, 017, r = [R,, Rs17, and 7 = [T}, 7,17, equations (6.18) become

a+7r = Q@7
and o —r = AO—IQO_IQIAIT (6.1 g)
where
—? + Zﬂzkfl —I<:‘,‘2l —? + 2p21cga —kﬁz
@ = —2()’2 1 @ = —22 1
ﬂcal 0 77€a2 0
= . and A = R
B 0 kg 1 0 kg,

Equations (6.19) can be solved explicitly for 7 and T as a function of the incident angle
¥ = cos“(alkal/ w) and a. This was done numerically and the results are shown in Fig-
ure 6.4. The problem with these reflection and transmission coefficients is the singular-
ity; the coefficients become very large for certain incident angles. This would seem to
insure instability. We tried all of the other sets of variables listed in the table and

several other boundary conditions of the type
Iozg, = [20:92

where ') and I'; are 2 by 2 matrices, but all of the ones tried exhibited the same

features as the plot in Figure 6.4. We concluded that the instability is probably
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FiG. 6.4. The figure shows the apparent reflection and transmission coefficients, for the
first set of mixed variables listed in Table 6.1. The incident wave is a P wave. The

singularity in both the reflection and transmission coefficients appears to cause the ins-
tability shown in Figure 6.3.

unavoidable with these differential equations.

Conclusions

We have not been able to conclusively select a set of variables for elastic wave
extrapolation. Each of the three types discussed fail to satisfy all of the requirements
of an ideal operator. We feel, however, that for modeling purposes the displacements
are the best choice. The present lack of higher order approximations limits the angular
accuracy to a cone about the extrapolation direction. However, since the internal boun-

dary conditions are satisfied the solutions should be correct within the cone.



