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Non-existence of a Gelfand-Levitan Coordinate System for
the Wave Equation

Bert Jacobs

Abstract

The Gelfand-Levitan inversion procedure can be extended to multidimensional problems
when the scattering potential is both local in one of the spatial variables and is frequency
independent. Unfortunately, there is, in general, no coordinate transformation of the spatial
variables which converts the pressure wave equation into a Schrodinger equation of the
desired form. Thus, the procedure is probably not applicable to the pressure wave equation

when the propagation medium is laterally and vertically heterogeneous.

Introduction

Gelfand-Levitan tech?iques were applied to the multidimensional Schrodinger equation
early in the last decade. Any partial differential equation which is obtainable from the
Schrodinger equation via coordinate transformations is therefore invertible. Two of the par-
tial differential equations that govern this coordinate transformation for the pressure field
wave equation are those that govern ray tracing. A third seems to do nothing except frus-

trate attempts at inversion.

Our goal is to invert, using Gelfand-Levitan type methods, seismic data recorded near
the surface. The inversion will be done in an as yet undefined coordinate system. In fact, it
will turn out that when a coordinate system for the job exists it is determined by the output
of the inversion step. What defines an appropriate coordinate system, when such a system

can be found, and what to do with it are the questions that need to be answered
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Jacobs 198 Non-ezxistence of Inversion Coordinales

M ultdimensional Gelfand-Levitan Inversion

The Gelfand-Levitan procedure inverts for the potential operator V(Z,27) in the

Schroedinger equation

2 -
V +FE - WZ2)ul@,E) =0 (1

2
given reflection data. On the basis of Kay and Moses’s paper (1955), we conclude that a

sufficient condition for a Schrodinger equation to be invertible is that its potential operator
17(5:’ ,Z ) be local in some direction. We identify the direction by a unit vector 7. In practice
17 will only be non-local through derivatives. In this case, it is convenient to think of V as a

function of neighboring points Z and Z ’ separated by an infinitesimally small distance.

Suppose we have in our possession the plane wave response F(z ,‘r,xg,'r) in terms of
the shot and geophone positions, z, and Zg, and time 1. Letting Z denote the vector with
first component Zg (or z,, when appropriate) and second component 7, we can plug R into

the Gelfand-Levitan integral equation

KZZ2)+ R(ZZ2) + f dz " K(z,Z2')R(Z"2Z) = 0 (2)
(@ -2)-550)

which can be solved by suitable mathemagic for the triangular (in 7) operator K. The poten-

tial can be recovered from K through the equation
W@ ) = -2 6(@-2)7) L-K(#,2) (3)

Readers interested in the d?rivations of these equations are referred to Faddeev’s

(19786) paper for the gory detalils.

Coordinate Transformations

Since the Schroedinger equation is invertible, one way to get a "nice' potential for the
wave equation is to first convert it into Schroedinger fo(r;m. In a layered medium there are
several ways in which to accomplish this transformation. We now consider a medium with
laterally varying bulk modulus and density. The wave equation for the pressure field in this

medium is

+ 9’;— w(z,z,0) = 0 (4)

To obtain the desired form of equation (1) from equation (4) we change from the Carte-

sian (x,2) = (z1,z°) to curvilinear (£',£°). Superscripts appear instead of of subscripts
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because coordinates transform contravariently (see reference 4 or the appendix).

Denoting the covariant metric tensor and its determinant in the new coordinate frame

by [gi;]and 7, respectively, the wave equation changes to

1
TIEG

- 1 i 2 o
)} 6?:“' |9|1/2‘;‘ 297 6% + a;_ w(zLz%w) = 0 (5)
K Jj

where 5 is the ij component of the inverse of the matrix [, ].
g7 = ([Gim17¥ (6)

One of the restrictions on an invertible potential is that it be frequency independent, so
the k£ under the w® must go. Thus, a redefinition of wave variable and a similarity transfor-

mation must be done. Defining

p(2',2%,0) = s u(z',2%w) (7
it is found that ¢y obeys the equation
1e__1 Z 8 |—|1/e—ikl_ 172 4y 4 osR =0 (8)
ClerE ger Y et T

The potential in Equation (8) is frequency independent but is not yet in the desired
form since it is not yet diagonal in some direction. For this to hold, some restrictions must be
placed on the metric tensor. We will try to get a potential which is diagonal in the Z* direc-

tion.

A step in the right direction is to require that the coefficient of (8¢)/ (8Z19z%) vanish.
Since the material properties k£ and p are both positive and since the determinant of the

metric tensor dare not disappear we are forced to set
g2 =0 (9)
To get the coefficient of (8%¢)/ [(#Z%)?] to equal 1 we require that
vRg? = 1 (10)

The most complex of the restrictions is obtained by requiring that the coefficient of
(8¢)/ (8Z%) vanish. This is the last condition needed to get a z?-diagonal form from the

wave equation via coordinate transformations. The resulting differential equation is

_ 1 _ 1 okl
172 a’CI/Z + 172
171 s g1l PP

0
ol

=0
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which has solutions of the form
lg] = F(Y)

where F is an as yet arbitrary function of Z!. Since |7 | is equal to |g!!-g**| we can get

an equation relating F to g!.

g} = v*F(zY) 11)

Equations (9), (10), and (11) are the required restriction on the coordinate transforma-
tion metric. Each of these relations is a partial differential equation for 1,2‘:2 in terms of

z1,z%. For instance, equation (9) is equivalent to

az! az® = 8x! 8x*

=0 12
dzx® Bx? gzl ax!? (12)

while equation (10) can be written as

0z 2+ az2 )" _ 1 (13)
ozt az?|  w?

These two equations are familiar and almost expected. Equation (13) is the eikonal equa-
tion and equation (12) is the requirement that the wavefronts and raypaths remain orthogo-
nal. So far, we conclude (prematurely) that the the right coordinate system in which to do

inversion is that defined by ray tracing procedures. Now, let’s look at equation (11).

2

=1
gxz = v® F(zYz',z?)) (14)
x

ozl ¢
dxl!

If we solve the eikonal equation for increments in Z? and feed the result into the ray
equation to get increments in £!, we may be able to determine F(zY(z!,z?)) by equation
(14). For this to work, g“ must have the same sort of behavior in the Z* direction as v®.
This is extremely unlikely, so it is safe to conclude that for media that lack symmetry the

wave equation cannot be turned into a Schrodinger equation by coordinate transformations.

Appendix on Curvilinear Coordinates and Tensors

To get the wave equation in curvilinear coordinates it is necessary to consider how
vectors and vector operators behave under coordinate transformations. Tensor calculus is a
requisite in problems like these. Eventually expressions for the divergence and gradient

operators in nearly arbitrary coordinate systems will be found.
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- 2, 0
Given unit base vectors g, we can get to new base vectors Ey by forming constant

coefficient linear combinations
Ey = Yoafé, (A1)

where the cxf, are constants and do not depend on the coordinates z*¥. We can form a
matrix of the a’s and take this matrix’s inverse. The k,M element of the inverse matrix of

the transformation matrix [af;] is given by

cofactor of afy Ak

M -

e = (A.2)

A = det[ak]
Since [8¥] is the inverse matrix for [a ]

Yokl = of  Lohisé = ok (A.3)

M k
er = Zﬁ;{‘gg ‘ (A.4)

J2

So far we have only considered transformations on unit vectors. In general a covariant

-

vector @ with components {(a,,as, . .., a,) transforms to a covariant vector with com-

ponents (4,,45, . . . . 4.) according to a rule like that followed by the basis vectors

Ay = iafl% o = i)ﬁlg‘AL (A.5)
k=1 L=1

o
The vectors which we commonly use are not covariant but contravariant. If £ is a con-
travariant vector with components (z!,z? ... ,z") then it transforms to a contravariant

vector with components (X!,X? . .. X7) according to the rule
E' = ZXHE—.,H = ZZXMQﬁgk = Zxkak
M Hk k

Hence, a change of basis vectors according to a covariant rule is equivalent to a change of

coordinate systems according to a contravariant rule

X4 = Y gtk ¢ = Yafx¥ (A.6)
k M

In general, covariant indices will be written as subscripts, while contravariant indices will

appear as superscripts.
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Equations (A.5) and (A.6) tell us how to make transform vectors under a constant coef-
ficient, linear coordinate transformation. The equations for an even higher rank tensor in
curvilinear coordinate transformations are not much more difficult. The new coordinates X¥

in can be expressed a in terms of old coordinates z? by a function of the form
X¥ = pM(z,..z7)

Then an increment of Xy is given by

i
XM = Z%dz" = Y.BHs* (A.7)
x 0z %

of = g;; pY = gﬁf (A.8)
Tensors are those quantities that transform according to
O R AR A
1" “m
mim = L, Bl BnanaRtllr (a.9)
m

and similarly for the inverse transformation relation.

One of the most important tensors are the metric tensors, g;; and g;; . If ds? is an
incremental distance, the square of the length of an infinitesimally small vector with com-
ponents dz' at a point P(x!,z?) defines covariant tensors g; and gy in the Cartesian and

curvilinear coordinate systems, respectively, where
ds? = ) ggpdridz® = ) 6, dridzt
ik &
= Y GimdE dE™ = 3\ Gim BRI A dx (A.10)
im i tm

By equating coefficients we find that

gy = 2ImBiBI gy = 2Lgmoda] (A11)
im

im

which is just the condition that gi; represent the components of a covariant tensor. In
Cartesian coordinates, =¥, the metric tensor takes the form g; = &;;. Using the fact that
[a] is the inverse of [#]
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ozt oz
oo oot = - - (A12)
Eglm 1 Z 1Ay - 8zt 8zl

.y 9xt 8z’
%) o e
g 2; dz! oz

The metric tensors can be used to define the covariant components of a vector [u]

given its contravariant components according to

U = ;gikuk
= Ygtu
j

where g is the jk component of the inverse of the matrix [9;] We can also use the g;; to
define the inner product of two vectors [u] and [v] in terms of the contravariant com-

ponents of these vectors
[ullvD = Yur' = Lgauvt = Turu, = Yguu,
i ik k I

It is easily proved that these expressions define a scalar which has a numerical value

independent of the coordinate system in which the mathematics is expressed.

The tensor coefficients g;; can be placed in a matrix [g]. Let g denote the deter-

minant of this matrix. The divergence operator in curvilinear coordinates can be defined by

i1 — 1 _
vi[a*] = 717 Z 6—‘ 1§ |42 at (A.13)

Similarly the gradient of a scalar V is a covariant vector with components a;, where

oV

= (A14)

The vector [@] with covariant components &; has contravariant components @*. The relation

connecting these two sets of components is
= Y g9a (A.15)
j
g9 = Ugim1™DY (A.16)

Divergence and grad are two operators needed to express the wave equation in curvi-

linear coordinates. Collecting appropriate expressions

(]

L
fel Bx-’
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