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Convergence of the Continued Fraction for the Square Root
Function

Bert Jacobs and Francis Muir

Abstract

The square root function can be approximated with a continued fraction for use in wave
equation migration algorithms. This continued fraction can be generated by a recursion. If
no dissipation other than dip filtering is employed then the recursion converges in the pro-
pagating region and on the boundary between the propagating and evanescent regimes. The
recursion diverges in the evanescent zone and at zero temporal frequency.. Depending on

the starting point convergence may also occur along a pair of radial lines in the fk -plane.

The evanescent zone disappears when the wave operator is causal and has a spectrum
with a strictly-positive real part. The continued fraction in this case will converge essen-

tially everywhere.

Introduction

The one-way wave-equation governing the modeling of downgoing waves in a laterally
homogeneous medium has a single square root operating on its derivative operators. If this

equation is split into diffracting and shifting parts, then the diffracting part takes the form
D, P = —|-AD, + (*DE + | D, 1P P (1)

where D, and D), are causal differentiators. The derivative with respect to time, D;, may be
implemented in the frequency rather than the time domain. The operator | D, |2 is a positive
semi-definite operator which is a discrete implementation of the negative of a second dif-
ferentiator with respect to the lateral spatial variable z. The reciprocal of the acoustic

velocity is represented by A.
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Usually equation (1) is discretized with respect to z with the Crank-Nicholson approxi-
mation. The problem which now occurs is that some representation for
—AD; + (A*Df + | D;|?)?? needs to be found. This operator is a special case of the class
of operators of the form —L1 + (/L 12 + L)% where L, is an operator with a non-negative
real part and L, is non-negative definite. The square root is defined so that it is a non-

negative real operator.

Computer E xperiments
The continued fraction representation for the square root function can be generated by

the recursion. Setting L; = 4 then

Lg
Sin = 3ivs,
where S; is jth member of the recursion.

Propagating waves correspond to values of I, less than 1. Consider, for example,
Ly = 0.95. Starting with Sg=1-4i, we find that S, =0.4750 —0.47501,
Sz = 0.1769 — 0.56791, and so on. After 25 iterations, S; has more or less converged to
0.0000 — 0.77641.

The boundary between the propagating and evanescent zones is at L, = 1.00. This
time Sy =1 +14, $; =0.50 - 0.50%, S, = 0.20 — 0.601, ... Convergence is slower in this
case than for the case [L;<1. For instance, S,, =0.006 —0.97501,
S4; = 0.006 ~ 0.9766i, S, = 0.006 — 0.97621, and so on.

In the evanescent region the continued fraction often diverges. With 1, = 1.05 and
So = 1 — 1 the approximants oscillate about without settling on any one real number. As

evidence of this, the first 14 approximants are displayed.
S, = 0.6250 - 0.52501 Sg = 0.0617 — 1.04061i
Sz = 0.2249 — 0.6318% Sy = 0.0688 —1.0912¢
Sg =0.1228 — 0.74731 S0 =0.0745 - 1.15061%
S, = 0.0814 - 0.83021 S =0.1076 — 1.22671
S5 = 0.0622 - 0.89321¢ Sz =0.1854 — 1.33214
Sg = 0.0631 — 0.94571 S 13 = 0.4051 — 1.45961

Se = 0.0600 — 0.99341 S14 = 0.9325 - 1.24414
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At L, = 2.00, still within the evanescent region, a different sort of analytic behavior is

observed. With Sy =1 — i the sequence of approximants converges in a single step to

1 —i. There are good reasons for believing that divergence is the rule in the evanescent

region and that one-step conversion is exceptional. Those reasons are the proofs and dis-

cussions which comprise the remainder of this paper.

Convergence Properties

Truncating a continued fraction after successively larger partial denominators yields
infinite sequence of approximants, numerators, and denominators. The convergence of many
continued fractions is very difficult to prove. This is not true of the fractional representa~

tion for the operator
=L, + (LE + Lp)72 (2)

because most of the necessary work is already to be found in Wall’s book on continued

fractions. The continued fraction representation for operator (2) is

Lg

I (3)

2L, +

21y + 57—

Truncation of this continued fraction generates a sequence of approximants. For

instance, the first three approximants are

Lz Lz L2

2L, Lz Lo
2Ly + 51 2L, +

2L+

(4)

2
2L,

The convergence of sequence in (4) is examined in Appendix A.

We are more interested in a sequence which is derivable from the sequence in (4) by
altering the ""foot' of each approximant. This is the preferred form for a "diffraction' opera-
tor when dip filtering and some sort of phase correction is included. The first three terms in

the altered sequence are given by

Lg Lz LZ

2L10 ’ Lg ’ Lg
21+ 57

(8)
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where ¢ is a complex constant. The limiting behavior, assuming that none of the denomina-

tors vanishes, of sequence (5) is examined in Appendix B. For this sequence:

Case Limit
1. | Ly + (L} + L)% < | L, — (L} + L)' —Ly — (L% + Ly)'#
2. | Ly + (LE + L)% > | Ly — (LE + Lp)*7 —Ly + (L} + L)%
8. L+ (L + L)? =L, ~(L} + Lp)?and L; >0 -1,
4. 2Lc = [Ll + (LE + Lz)”z] —Ly + (L§ + Lp)1%
5. 2Lc = [Ll ~ (L} + L2 —L; — (L} + Lp)'#

Divergence will certainly occur in any case other than these five. For instance, if
Li+ (LE + L)% and L, — (L? + L)' are not equal but have the same modulus, then the
sequence of terms will diverge. Finally, it should be noted that equation (4) can be obtained
from equation (5) by setting ¢ = 1 so that their convergence properties need not be con-

sidered separately. When ¢ = 1, cases 3,4, and 5 are all equivalent to one another.

The Visco-acoustic Assumption

In practice we are only interested in operators of the form of equation (2) which are

also causal non-negative real (CPR when non-negative is changed to the stronger positive)
Rel; =0 ImL, =0
RelL,c =0 c¥0 (6)
Rel, =0 ImL; = O

The inequalities and equalities in (6) are a set of working hypotheses which will be referred
to as the 'visco-acoustic” assumption. This is because they are necessary properties for
modeling many visco-acoustic wave equations. The assumption that Im/.; = O follows from
the representation of JJ; as 1w and reflects the fact that our wavefield is real (in the time
domain) and only non-negative frequencies need be considered since the negative frequen-
cies can be obtained by Hermitian symmetry. The restriction that ¢ 0 is necessary for the

first term in (5) to make sense.

In the following, we will retain the convention that the square root of a quantity with a
positive real part have a positive real part itself. This implies a branch cut along the nega-
tive real axis. The square root is defined so that it purely and positive imaginary along this

cut. This choice reflects our desire to set
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Ly = (L§)”#

For simplicity, we restrict I, and L,c, temporarily, so that they have strictly positive
real parts and examine the different cases for convergence and their limits. Case 1, refer-
ring to the convergence table of the previous section, is equivalent to the inequality
Re[Z;(L? + L3)”?] < 0. Since L, is real and non-negative, the imaginary part of the square
root and the imaginary part of L, f have opposite signs. The real part of the square root and
the real part of Lf are both positive. Consequently, the real part of their product
Li(L} + L3)!7% is non-negative. In other words, case 1 never occurs. Similarly, it follows

from the fact that Re(L} + L;)!/?>0 that cases 3 and 5 never occur.

Next consider a situation in which ReZ, > 0 and Re(L,;c) = 0. Cases 1 and 3 never
occur for the same reason they didn’t occur when both of these operators were strictly

positive real. 1t turns out that cases 4 and 5 are different. For case 4,
Re[L,(2¢ —1)] = —Rel; <0

while Re(L? + L)/ > 0. It follows that case 4 never occurs, either. Finally, we examine
case 5. When it holds (if ever)

~Rel, = —Re(L? + Ly)!”#

implying that L, = 0. When [, = O under case 5, ¢ must equal 0, which can‘t be.

Now for ReL; = 0 and Re(/;c) > 0. Once again, case 1 can never occur. Cases 2, 3,
and 4 can. Equation 5 is harder but not very hard. For —(L# + L,)!”? is non-negative real
and

Re[L(2¢ —1)] = 2Re[L,c] >0

when Rel,; = 0. Consequently, case § never occurs.

The situation that is the hardest to analyze is the one which lacks any damping, i.e.
ReLl =0 Re[Llc] =0 (7)

Though it is a boring conclusion by now, case 1 just plain never happens. Cases 2 and 3 do.
Cases 4 and 5, as usual, need to be looked at more closely. A first step is to note that for
equations (7) to hold ¢ must be pure real. A second is to combine cases 4 and 5 in the sin-

gle statement
(2¢c — 1)L, = (L} + L)% implies the limit —~L,+(L? + Lp)'7?

Since L, is pure imaginary and c is pure real, (L} + L3)!”? must be pure imaginary. By the
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branch cut convention, Im(Z? + L;)!“? has the same positive sign as Im/L,. This means that
the size of ¢ determines the convergence of the sequence. When ¢ = ;—, the sequence
converges to —/L, + (L} + L)% However, when ¢ < —;—, the sequence (5) converges to
the wrong limit for migration purposes, namely, —1.; — (L} + Lp)2
These results can be summarized in another table.
Rel >0 Rel,>0 Re/, ;=0 Rel,,=0
Rel;c>0 Rel,c=0 Rel;c>0 Rel,;c=0

ReLi (L} + Lp)**%<0 never never never never
ReL{(L? + Lp)%>0 T A A TE AT AR SV
L +L,=0, L; 70 never never -L1 - L1
Li(2c—1)=(L} + L) —L,+V never —L+V =L+
Li(2e —1)=—(L? + Ly)'?  never never never ~L—

A table entry of "never" in the ith row and jth column means that case number i cannot
occur under the conditions listed at the top of the jth column. Otherwise, the limit is indi-

cated. Divergence occurs for all cases not listed at the left-hand side of the table.

We can now conclude that if one of L,, ;¢ has a strictly positive real part and Muir’s
recurrence converges then the limiting value is the correct one for wave-equation work.
When both L, and L,c are pure imaginary then we must have ¢ > 1/ 2 for correct conver-
gence. If ¢ < 1/2 then there will be convergence to an incorrect square root along a line in
the fk-plane. Interestingly enough, this anomolous convergence takes place in the interior

of the propagating region of the one-way wave equation.

The Visco-acoustic Assumption and Non-V anishing Denominators

The continued fraction convergence criteria which have been offered for (4) or (5)
assume that all of the denominators of the successive terms are non-zero. This will be true
when the "visco-acoustic" conditions are met and either L, or I ;c is strictly positive. It will
also be true if both of these quantities are pure imaginary (and non-zero) as long as either

¢ >1/2 or c is irrational.

The proofs in the appendices work from the top down. This time, we work from the bot-

tom up. Let S, denote the pth term, where

Lg

SO = 2LIC
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S, = Lz = Np
» = 20,+8,, D, .

(8)

When L,c is non-zero and non-negative real, as is the case under the conditions of the

visco-acoustic assumption, S is well-defined and non-negative real. The next term,

Ly

Ly
25L,¢c

SI=

2L, +

is well-defined and (strictly) positive real when L, > 0. It is equal to zero when L, = 0. For

an inductive proof, assume that either $,, S, - -, Sp_l are all well-defined, all strictly
positive, and that L, > O or that S, Sp, - - -, S,_, are all zero and L, = 0. In the first
case,
L
S, = o—
P 2Ly + Sp

has a positive real denominator and a real and positive numerator. Hence, Sp is well-defined
and positive real. In the second case, the denominator still has a positive real part, but the
numerator is zero. Hence, S, is equal to zero. By mathematical induction, Sp is well-defined

for all p.

If both Re/, = 0 and Re[L,c] = O one of the Sp s might well be ill-defined, even in a
case listed as convergent in the table of the previous section. For example, if ¢ = 1/4,
L, =1i,and L, = 1, then Sy = —2i, and

1

S 58,

has infinite modulus. Continuing by setting the next term, S, to O, then Sg= —i/2,
Sg=—-2i/8, S5=-8i/4, ... , Sp = —i(p-2)/(p—1). This sequence converges, as
predicted, to —i.

We now proceed to the proof that divergence by exploding term will not be a bother for
the case Rel, =Re[L;c]=0if ¢ #1/2(1 —1/p) for some positive integer p. From
Appendix B, the denominator of the pth term in the recurrence under examination will vanish

when
czPl + (¢ —1)x?P —(¢c—1)z —¢ = O (9)

Ll “"(Lla + Lz)jle
Iy + (LF + Lp)®
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u = L+ (LE + L)% v = L, —(LE + Lp)1®

Since z ¥ O when L; # 0, we can show that 1/ z is a root of polynomial (9),too. This means
that all roots of equation (9) lie on the unit circle. In the language of Appendices A and B,
this is equivalent to the statement that |« | = |v]. Divergence by oscillation occurs when-
ever |u| = |v| and u # v, so the only case that needs to be considered is that in which
@« =wv = L,. This is the case on the boundary between the evanescent and propagating
regions of the fk-plane. Replacing u with L, and uw/v with 1 in equation (B.2), the pth
term of the recurrence is found to be

(2¢ — 1)
¢c—-1p +1

—Ll + Ll (2

This expression will be well defined for all natural numbers p aslongas ¢ #1/2(1 —1/m)

for some positive integer m..

Special Case: [, = iwA, Ly = |D,|?
Set [, equal to iwA, where w is the temporal wavenumber, A is the medium’s acoustic

slowness. Set L; = |D,] 2, an approximation of the operator which takes the negative of a

second derivative. This is the usual diffraction operator. The resulting recursion is

[ 212 | 2z 17

51 = ik Sivt = 3o+ S,

(j>1)

If |D;|? < w?A® then the wave is in the propagation region. Case 2 in which
ReLi (L} + Lz)!7?>0 holds, so S, exists and is equal to —iwA + (—w?A? + | D, |21

if | D, |2 = w?A® then the wave is on the boundary between the propagation and

evanescent zones. Case 3 in which L? +1, = 0 holds, so S, exists and is equal to —i wA.

If | D, |? < w?A? then the wave is in the evanescent region of the fk-plane. This time,
the sequence of S;’s does not (in general) converge. Exceptions may occur for certain

choices of c.

If the right choice of ¢ is made, there will be additional lines at which the sequence of

S;’s converges. These occur whenever
2cwh = |k;|

If ¢ =1/2 then this convergence takes place within the evanescent zone. The limit is the

correct, positive real diffracting operator.
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Appendix A - Convergence of Approximants

The continued fraction of interest is a representation of the operator
—Ly + (L} + Ly)!2 To investigate the convergence of fraction (3) to this operator, con-

sider the two roots u and v of the quadratic x?*—2L,z—~F = O.
Lo = —uv 2L, = u +v

uw = I +(L12 +Lg)1/2 v = I "‘(le +L2)1/2

Let Q take the place of the continued fraction (3) so that

Q0 = Le (A1)

Ly
2L+ I

Y A

2L

Substituting for L, and L, and dividing by © changes this expression to

1 — v
1o - (A.2)

uy
u+v -
uv

utv— -

u +v —

Dividing above and below the first fraction bar by u transforms this last expression into the

equation

v
1 - _ u
E—Q - v v (A-3)

u uv
u+v -
w+v-—

Equations (A.2) and (A.3) have the same sequence of approximants. Similarly, we can divide
above and below the second fraction bar by 1 without changing the sequence of approxi-
mants. In fact, this division can be done above and below all of the fraction bars without

changing the sequence of approximants. The result of this equivalence transformation is

v
1 - U
” @ = v (A.4)
1+ 2 C
u v
1+ 2 - u
LY
U
In dividing by u we have lost some generality, so we will consider the case u = O later.

SEP-26



192
Jacobs Muir Conlinued Fraction for the Square Root Function

The convergence of the approximants of equations (A.1) and (A.4) is studied in terms

of the convergence of still another continued fraction. Let z = ;‘—1:— and consider
L — = L (A.5)
1+ —@ 1- z
U x
1T+ - ———
1+~ -

The numerator and denominator of the approximants of a continued fraction satisfy a
pair of recursions. If we write the pth approximant of (A.5) by o,/ bp, the recursions for ap

and bp are

Gpyy = (1+x) @, —z a;_, (p=1)

bpey = (1+2) by —z by, (p=1) (A.6)

Equations (A.6) and mathematical induction imply that
p-l
ap = i =1)
i=o

by = 1 (p=1) (A.7)

The simple form of the b, ‘s is the reason for introducing fraction (A.5).

If the pth approximant of fraction (A.2) is given by Qp then the pth approximant of
fraction (A.5) is

1 _ %
1 by
1+ G

so that

Qp = (A.S)

s

As p », () converges to ~v when |v| < |u], converges to —u when Jv| > |u]|, con-

verges to —u whenu = w, and diverges otherwise.

We have assumed that © # 0. If, instead, w = O then L, = 0. As a consequence

every approximant of the fraction in (A.1) vanishes. When u = 0, |v]| > |u]| or
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v = u = 0 sothe convergence rules of the previous paragraph still hold.

Appendix B - Altered Feet

The terms of the sequence (5) can be obtained from the approximants of fraction (A.5).
If &, is the pth approximant of the continued fraction (A.1) and if a; and b, are the pth

numerator and denominator, respectively, of the continued fraction (A.5) then

_..___11 = .:L (B.1)
1+17Qp_1 P

The pth terms of the sequence (5) can be had by altering the pth numerator and denomina-
tor of the continued fraction in (A.5). In terms of the usual recurrence formulae for humera-

tors and denominators of approximants (see Appendix C)

H

Oy 4y’ (1+::_)C a, —Z—apq (p=1)

bpa’ = (142 )c by~ gy (p=1)

where the a,,' and b,” are the pth numerator and denominator, respectively, of the
sequence of equation (8). Substituting (A.7) into these last two expressions shows that
Jj

p=1
G’ = (1+ ) c Y

j=0

J _
v_] _ v RFlw
wu u =0 u

U

by = (14X -1
u u

P+

A little algebra is needed to combine the last few expressions and demonstrate convergence

or divergence. If @’ denotes the pth term of the sequence under investigation then

¢ +(c——1):i—
Qp = —U +U N =1 ” 3 N P N 7 (B-2)
c(+ Ly (L] - LK7Y
U plu u o |u
For finite p, this is equivalent to
c+(c -1NL [1 SR
u U
& = —u+u ' 51 (B.3)
c+(c—1)v——[3} (c—1)+cv~H
U U u
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As long as the denominators do not vanish, g, converges to —v when |v | < [« ]|, con-
verges to —u when |z | < |v|. Convergence when u = w is easier to see in equation
(B.2). When u/v =1, g, = —u +(2¢-1)u/[(2c—1)p + 1], so convergence occurs and

the limiting value is —u = —v.

Special choices for ¢ will also make the right side of equation (B.3) converge. For
instance, if ¢ = v/ (uw +v) then the numerator and the first term in the denominator will both
vanish. €, will then equal —u as long as the other term in the denominator does not vanish
(under the constraint that ¢ = v/ (u+v) this will happen only when © = v, a case which
has already been covered). Alternatively, we might set ¢ = u/(u+v) and get the second

term in the denominator to vanish. In this case, ¢, will equal —v.

Appendix C - Continued Fraction Recurrences

Truncation of a continued fraction at successively lower ''feet” yields a sequence of
approximants, each of which has a numerator 4, and a denominator B,,. Following Wall, any
continued fraction can be written as an infinite sequence of transformations £4,f,,t,, - - -
defined by

to(lw) = bg+w t, =

where the ap’s and b,’s are complex numbers and w is a complex variable. The continued

fraction can then be written as

limtgt, - - - £,(0) = bg +
n oo

The nth approximant of this fraction can be written

tot, - - £,(0) =

s

The numerators and denominators satisfy a recurrence equation pair heavily used in this

paper:
A_1=1 B_lzo A0:b0 BO=1

Apr1 = bpdp + 05004 (p =012, )

By = by Bp + 05418, ( =012,--)
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Good day for a change of scene. Repaper the bedroom wall.
A gleekzorp without a tornpee is like a quop without a fertsneet (sort of).
Tonights the night: Sleep in a eucalyptus trees.

"How doth the little crocodile
Improve his shining tail,

And pour the waters of the Nile
On every golden scale!

"How cheerfully he seems to grin,
How neatly spreads his claws,

And welcomes little fishes in,
With gently smiling jaws!"

What use is magic if it can’t save a unicorn?
-- Peter S. Beagle

A diplomat is someone who can tell you to go to hell in such a way that
you will look forward to the trip.

Things will be bright in P.M. A cop will shine a light in your face.

Dimensions will always be expressed in the least usable term.
Velocity, for example, will be expressed in furlongs per fortnight.

What the hell, go ahead and put all your eggs in one basket.

Law of Procrastination:
~ Procrastination avoids boredom; one never has the feeling that
there is nothing important to do.

I’d give my right arm to be ambidextrous.

Churchill’s Commentary on Man:
Man will occasionally stumble over the truth, but most of the
time he will pick himself up and continue on.

Never be led astray onto the path of virtue.
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