163

High Order Migration Operators for Laterally Homogeneous
Media

Bert Jacobs and Francis Muir

Abstract

Implementation of a fourth order finite difference operator for downward continuation
leads to a scheme which is economical, with roughly double the CPU costs of the 45-degree

equation. The coefficients of the algorithm can be generated recursively.

Introduction

High dips are present in quantity on profiles so their migration is difficult. The 45-
degree equation, a second-order scheme, may not be sufficient for this purpose. Both the
third and fourth order schemes lead to pentadiagonal systems of linear equations. The
fourth order scheme is therefore the next that should be considered when migrating in a

medium that is laterally homogeneous.

The usual development of a finite difference scheme will not be followed here because
the algebra needed to develop formulas for the coefficients is too tedious to get right.
Instead a recursion for generating coefficients for equations of arbitrarily high order is

developed.

Notation and Differentiation Operators

The operator notation used here will not be the standard one. it will be chosen so that
symbols for the same type of operator in the discrete and continuous cases will be the
same. Whenever possible, symbols will be chosen to reflect mathematical properties like

causality and non-negative definiteness.

SEP-26

Jacobs Muir 164 High Order Migration Operators

We begin with a causal differentiator with respect to time, J;. A finite, causal, discrete
differentiator has a diagonal made up of 1/ Af ‘s and a sub-diagonal of —1/ At ‘s, where Af is

the discretization interval size.

An anti-causal differentiator can also be defined. A finite, anti-causal, discrete dif-
ferentiator has a diagonal full of 1/At’s and a super-diagonal of —1/ At’s. The symbol

which will be used for this operator is D_;.

A differentiator with respect to z can be similarly defined. Following Muir and Claerbout
(this report), a rational form may be used instead. For example, a good first derivative

approximation is given in terms of the x-axis delay operator Z by

b1 1-2z
z Ax (1 —a) +0Z

Reasonable values of o lie between 1/2 and 1/10.9. A second derivative operator can be

constructed from the first derivative

1 1-72-2"+12]?

DyD, = Az? 1 -(a—-aY(1 =-2)(1 =-2Z%)

We will not even use a first derivative with respect to z. This being so, we will introduce a
new notation for the negative of the second derivative with respect to z, namely | D, |?.
The negative of a second derivative is a symmetric, non-negative definite operator and this
notation faithfully reflects these traits. In previous work, a discrete operator with -1,2,-1
on its sub-diagonal, diagonal, and super-diagonal, respectively, was denoted by 7. An

discrete approximation to the negative of a second derivative which uses T is

1 T

2 - 1 1
IDzI sz [_ﬁT

(1)

where £ is a positive, real number with a magnitude somewhere between 1/12 and 1/6.

Wave Equations

Migration is an implementation of a one-way wave-equation. To push upcoming waves

down, the proper one-way wave-equation for the job is

D_,P = ——(AEDE, + | D |2 P = — AD_, —AD_; + (A®D? + | D |32 P (2)
The square root in (2) is defined to have a positive real part. The significance of this

statement for the root an operator may not be clear yet. The root in (2) is operating on a

normal operator which has an eigenfunction decomposition of the form U’diag (\) U where U

SEP-26

Jacobs Muir 165 High Order Migration Operators

is a unitary operator. The square root of this operator is now understood has an eigenfunc-

tion decomposition of the form [/°diag (~X) U where each VX has a positive real part.

The minus signs in front of the square roots appear because the subject of equation
(2) is an upgoing wave. The D_,’s appear because (2) is intended for migrating rather than
for modeling and migration is an anti-causal operator with respect to time. The development
will be for laterally homogeneous velocity fields. This means that A, the acoustic slowness,
will be a diagonal operator in z and that the placement of the A’s in (2) with respect to the

derivatives is not critical.

The numerical properties of our implementation of the one-way wave-equation will be

considerably improved if we split equation (2) into two pieces.
1. D,P = —AD P = shift P
2. D_,P = —|-AD_; + (A*D?% + | D, |®2| P = undiffract P

where the operator in the second line is an "undiffract'’ operator because we are migrating
and migration is the inverse to diffraction. The basic recursion in a migration algorithm is the
process of stepping a wavefield from a depth z to a depth = + Az. When doing this, the
first equation can be implemented approximately by using
P(z,z + Az,t) = P(z,z,l —AAz). The second equation in the split presents more of a

problem. It has a formal solution of the form
P(r,z + Az,t) = exp[—— Az[— AD_, + (A%D? + | D, | 2)”3]] Plx,z,t) (3)

The Crank-Nicholson approximation of equation (3) is given by

/- [(AEDE, + 1D, 19)1-AD |
P(z,z + Az,t) =

P(z,2,t) 4
I+ [(AzDE, N |D¢|z)“3—AD_t]

The matrix divisions in equation (4) are justified because both the numerator and denomina-

tor are functions of | D, |?. Using the approximation of equation (1) and defining

Az Az2
A=?AD~t n:[ﬁiT d=[‘—ﬁT

changes equation (4) into the dimensionless form

A

I -
P(z,z + Az,t) =
I +1lA

n)%
2 -
5 -4
17z P(z,z,t) (5)
e
d

SEP-26

Jucobs Muir 166 High Order Migration Operators

The numerator and denominator of this rational matrix function need to be expanded as a

continued fraction.

Denominator Approximants

The denominator of equation (5) can be represented as a continued fraction to get rid

of the square root. Using the usual fraction and applying an equivalence transformation

. n)%
A+d - A

n

I+ =7+

(6)

24d +
24 + LU

n

d _—
24 My T

Equation (6) generates a series of approximants which satisfy the fundamental recurrence
relations for continued fractions (see Appendix A or the first 16 pages of Wall’s book on

continued fractions). Denoting the jth approximant Nj“/ DJ-+ , the numerators Nj“ satisfy
NY =1 N =1 Nt = 2Ad +n

Nt

I

2AN ., + antg (7 even, j = 2)

Ny

H

The denominators Dj" satisfy a second-order periodic recurrence as well. This

recurrence is given by

DY =0 D =1 D} =24

il

-Dj+ 2A_Dj+._1 + TLDth (j even,j = 2)

Dff = 24dD{", +nDz (j odd, j > 3)

Numerator Approximants

The numerator in the fraction in equation (5) can also be approximated by a continued
fraction and its sequence of approximants. If the jth approximant is denoted N;j/ Dy then
it is found that the N;~ and the D; satisfy recurrences. In fact, N;~ and D; satisfy the
same recurrences as Nj+ and D,-*, respectively. The only differences for the N’s occur at

the initialization steps. The first three Nj’s are

Nj =1 Ny =1 Ny =2Ad-n

SEP-26

Jacobs Muir 167 High Order Migralion Operators

The initializations for the sequence of Dj’s is precisely that of the Dj"’s. Hence

.DJ'+ = Dj_ ((lll]) (7)

Recursions for High-Order One-Way Wave-Equations

Given the sequences of numerator and denominator approximants we can approximate
equation (5) with yet another sequence of rational matrix functions. In terms of the four

operators D;*, D, Njt, and N;, the operator on the right-hand side of equation (5) can be

172
A2+% -—A] o _
_Ni/Dm N

1/2 - -
A2 + %] _;1] Nj+/ Dj+ Nj+

where use has been made of equation (6).

written as

I -

(8)

I+

Equation (8) implies that there exists a recursive way in which to generate the coeffi-
cients of migration schemes. If the jth approximation to the operator in equation (5) is

N;sDj = Ny / Nj", then the operator will obey a set of recurrences.

2
_ | Az ‘ _ A=z
B = [2AZ A = > AD_,

N,=1 Ng=1 N, = 24U —8T)+ BT

=
1]

2AN; . + BTN; 2 (j even, j = 2)

Z
I

2A(] —BTIN;_y + BTN; o (j odd, j > 3) (9)

D,=1 Dg=1 D =24 —8T) - BT

RS
1

2ADJ'_1 + BTDJ'_z (] e'ue'n,j = 2)

N
l

2AU —BT)Dj-y + BTD;z (j odd, j = 8)

These recurrences are useful in that they allow the programmer to build wave equations of
successively higher order from the j=0 and j=1 terms. The j=1 terms give a 15-degree
equation, the j=2 terms a 45-degree equation, the j=3 terms an equation of third order, and

S0 on.

SEP-26

Jacobs Muir 168 High Order Migration Operators

Second Derivatives for Wave Equations

One of the parameters which needs to be assigned a value is the g8 in equation (1). By
varying £ it is possible to vary the bandwidth and accuracy of the approximation. A choice
of § = 1/12 makes the derivative as accurate as it can get in the vicinity of k, = 0. If
the logarithm of the error is to be minimaxed over wavelengths from DC to Nyquist then a
value of 0.1326 should be used. In the program presented here, £ is set equal to 1/12 for
w = 0. fis set equal to 0.1326 for all frequencies w > vky, where ky is the Nyquist fre-
quency for the x-axis. Between O and vky, 8 is constrained to vary linearly from 1/12 to
0.1326.

Tests of this scheme yielded pleasing results. If the input is a zero-phase spike then
the output remained zero phase. The '"smile" of the output lacked the prominent fringes

which a bad choice of § creates.

Wraparound Removal, DC, and Ny quist

Temporal DC and Nyquist frequency components cause trouble. Nyquist corresponds to
neither positive nor negative continuocus frequencies so it fouls up causality properties. DC
is nettlesome because the wave equation does not propagate zero frequencies. Consider
for instance the migration of a spike which is supposed to vield a semicircle. If the DC is
passed, however, a prominent vertical streak is created as well. This streak can be elim-

inated by zeroing DC. The same is done to Nyquist.

The practice of zeroing DC and Nyquist is in contradiction with the usua! method of
roundoff removal. In theory, the seismogram at ¢ = O is removed before diffracting at each
z-step by subracting the average

1 N/f:—l
I FRe(P(z,2,0)) + Re(P(z,z,0y,2)) + PX 2Re(P(z,2,0;)

where N is the number of time points in the input and a power of two. Thus
wj = 2mj/ (N At). If DC and Nyquist are unavailable then the best average that is avail-

able to estimate the wavefield at { = O is
1 N/s2—1

—_— 2Re(P(z,z,w;)

SEP-26

Jacobs Muir

169 High Order Migration Operators
Dip Filtering

A dip filter is obtained by altering the "foot" of the square root approximation used by a

migration algorithm. We are more or less solving a partial differential equation with a disper-
sion relation

2
k, = wA = B
, s
21 + 5
. s
2i + 2
2i + -
21
where s = wvk./ w. This does not have any dip filtering so we add this in next
52
k., = wA z (10)
2i + S
, s
21 + 5
, s
2

+ ——————
YT 2l ri8)
This is at variance with most previous SEP work in that it makes the dip filtering parameter ¢

frequency dependent. The reason for this is that the dip attenuation simplifies with this
choice. The real part of k£, from equation (10) is

—es8

169)° + 64:°%(2 — s?)?

AT @i T an

which is a function of s alone (if the multiplicative factor wA is ignored). Since s is the sine

of the propagation angle equation (11) is an unusually simple form for the response of a
migration dip filter.

Migration Examples

The fourth order operator was used to generate a migration impulse response. The
migration and plotting parameters were as follows:

dr = 20.0 dz

= 20.0 dt = 0.004
nzx = 129 nz = 128 nt = 64
g = 0.0625 ¥ = 0.4375 v = 10000,

clip = 2.0
A seismogram was placed on the 65th trace, centered at time point 32. The waveform was

a three point wavelet of the form -1,2,-1 to cut out zero frequency. The migration output is
in Figure 1.

SEP-26

Jacobs Muir 170 High Order Migration Operators

FIG. 1. This impulse response was generated by a fourth-order migration algorithm. The
coefficients ¢ and ¢ were chosen to get the dispersion curve to match at 90 degree dips.

An equivalent migration using the 45-degree equation was done with the same parame-

ters, with the exception of £ and ¥ which were given by

£ = 01256 ¢ = 0.375

SEP-26

Jacobs Muir 171 High Order Migration Operators

FIG. 2. A 45-degree migration impulse response has poor behavior at high dips.

Appendix A
Given a continued fraction we can usually form an infinite sequence of approximants by
truncating the fraction. Borrowing heavily from Wall, suppose we are given a sequence of

transformations, £, £,, £5, - -+ -+ defined by

_%

to('l.U) = bo + 1w tp(w) = bp ¥ w

where the a,’s and b, ’s are complex numbers and w is a complex variable. a, and b, are

SEP-26

Jacobs /Muir 172 High Order Migration Operators

called the pth partial numerator and partial denominator, respectively. The continued frac-

tion that corresponds to this series of transformations is

a;

limtgt, - £,(0) = bg +
n -+ (¢4}
b, +

Qg

R

The nth approximants of this continued fraction are given in terms of nth numerator

A,, and the nth denominator B, by

An
tot; " £,(0) = —
0&1 n() Bn
so that the first few approximants are
a, a,
b1 by + -2
1 b2

The numerators and denominators of the approximants satisfy the fundamental

recurrence formulas
A, =1 B, =0 Ag = by Bg = 1

AP+1 bp‘*'lAP + a?"'lAP‘“l (P = 0’1s2) T)

Bp+l = bp+pr + up+pr—1 (p = 012,--)

These formulas can be proved by induction.

REFERENCES

Godfrey, B. and Jacobs, B. (1979), A Program for Stable Migration, SEP-16, pp. 109-19.

Morley, Larry (1979), Numerical Viscosity Considerations for the Monochromatic 45-Degree
Equation, SEP~16, pp. 109-19.

Wall, H.S. (1948), Analytic Theory of Continued Fractions: Bronx, N.Y., Chelsea Publishing Co.

SEP-26

173

Migration (z—variable velocity) program using
recurrences to find coefficients. The foot of
continued fraction for the square root is doctored.
Fourier transform conventions:

F.T. P(xsw: 2) = sumlP(x, %, 2)exp(—iwt)]

F.T. #%=1 : P{x,w, 2z) = (nt##—1) sumlP(x, t, z)exp(iwt)]
nx = no. x-grid pts nt = no. t-grid pts

nz = no. dz steps nw = nt/2+1 = no. frequencies
dx = grid interval in x dt = grid interval in ¢

dz = z-step size dw = frequency interval

eps = dip filtering 2> O psi = phase matching

beta = 2nd x—derivative coefficient, bmin < beta < bmax
pf: P(x,w,2z=0) - ifc is file address : input

sC: P(x,w,220) - ifs is file address : scratch
mg: P(x,t=0,2) -~- ifm is file address : output

nx4 = bytes in real vector of nx elements
nx8 = bytes in complex vector of nx elements
wsc = scaling parameter for wraparound removal

T HREEEXEE RS ERER

common /global/msc,.mx.my.q.7.s

complex#8 msc(3, D), mx{(3,5).my(3,5), q(256):; r(256), s(256)
complex#8 ml(3, 8}, mr(3,5), p(256), rhs(2546), t(25&)
complex#B8 tc(254)

real#d4 £r(256),vr

real#4 beta, bmax,bmin, dt,dx, dw,dz, eps, pi, rmig(256),psi
real#4 sl,v,w, wc,wrap(256), wsc

integer ichk,ifc, ifm, ifs, ifv,ir,il,iw, iz, nor, nread
integer nseek,nt, nw, nurite, nx, nx4, nxB,nz,ix

integer cclase:cread, cuwrite, cseek

#

#

call begin(ifc, ifs, ifm ifv.nx,nt:nz,dx,dt.dz, eps.psi,nor)
bmax = 0. 13264

bmin = 1.0/12.0

ne = nt/2 + 1

pi = 3. 14159245
dw = 2. #pi/(nt#dt)
nx4 = 4u#nx

nx8 = g#nx

ir = 1

il = -1

wse = 1.0/(nt-2.)
Copy the input and initialize wrap—around
Remove DC and Nyquist w’s

do iw = 1, nw {
nread = cread(ifc, tc, nx8)
do ix = 1i,nx

t(ix) = tc(ix)
it (iw == 1)

call zero(2%#nx, t)
it (iw == nw)

call zero(2%¥nx, t)
call zaptO(rmig. &, iw, nw, nx)
nerite = cuwrite(ifs, £, nxB)
¥

ichk = cclose{ifc)

174

call rscal{rmig, wrap,nx, wsc)

#

Downward continue in z

Read in the velocity, zero migration accumulator
Find wc: the w where x—aliasing occurs

do iz = 1l.nz {
nread = cread{(ifv, vr,4)
v = vr
sl = 1.0/v
call zero(nx.,rmig)
we = v#pi/dx
Loop aver frequencies, treat DC differently
do iw = 1,nw {
nseek = cseek(ifs, (iw-1)#nx8,0)
nread = cread(ifs,p,nx8)

it (iw == 1)

call zero(2#nx, t)
else if (iw == nw)

call zera(2#nx, t)

else {
w = (iw-1.)#dw
it (w <€ we)
beta = bmin+wit(bmax—bmin)/wc
else
beta = bmax

Remove t=0 component from p. implement phase shift,
then diffract
call unwrap{(p,wrap,nx)
call cshift(sl,p,w dz,nx)
call mtrx(mr, ir,sl,w, eps,dx,dz,beta, psi,nor)
call rhsv{(mr,p, rvhs, nx)
call mtrx(ml,il,sl,w, eps,dx,dz,beta,psi,nor)
call pentcinx, t:ml:ths)
3
Sum over w’s to get t=0, save all w’s in scratch file
call zaptO(rmig: ¢, iw, nw, nx)
nseek = cseek(ifs, (iw—-1)#nx8,0)

nwrite = curite(ifs, t, nxB)
>
Save migrated output and compute wrap—around
do ix = 1.,nx
tr(ix) = rmig(ix)
nurite = cwrite(ifm, tr, nx4)
tall rscal(rmig.wrap, nx,wsc)

>
Close all files

ichk = cclose(ifm)
ichk = cclose(ifs)
ichk = cclose(ifv)
stap
end

Multiplies a real vector by a real scalar:
y(i)=x(id#sc for i=1,2,...:n
subroutine rscal(x,y,n,sc)

175
real#4 sc, x(1),y(1)
integer i,n

do i = 1i,n

y(i) = ge#x(i)
return
end

Fills a real vector nx long with zeros
subroutine zero(nx, x?
real®4 x(1)
integer ix,nx
do ix = 1,nx
x(ix) = 0.0
return
end

Subtract wrap-around from p
subrouvtine unwrap(p,wrap.nx)
integer nx
complex#8 p(1)
real#*4 wrap(1l)
integer ix
do ix = 1,nx

plix) = p(ix) — wrap(ix)
return
end

Phase shift implementation
P <=~ P exp(widz/v)
subroutine cshift(sl.p,w,dz, nx)
integer nx
real*4 dz,sl.uw
complex#8 p(1)
integer ix
complex#8 csh
complex#8 cmplx
csh = exp(cmplx{(0. O, w¥dz#gl))
do ix = 1, nx

plix) = plix)#csh
return
end

Sum frequencies to get t=0

rmig = int from w=0 to Nyquist of Re(t(w))
subroutine zaptO(rmig. %, iw, nw, nx)

real#4 rmig(l)

complex#8 £(1)

integer iw, nw, nx

real#*#4 fact

integer ix

176

if (iw == 1)
fact = 0.0
else if (iw == nw)
fact = 0.0
else
fact = 2.0
do ix = 1, nx
rmig(ix) = rmigl(ix) + fact#real(t(ix))
return
end
Sets up propagation matrices
ior = order of recurrence
a and b are recursion parameters
al is the parameter ‘a’ modified for dip filtering
t is used in second derivative approximation
Ddd & even recursion steps have different coefficients

subroutine mtrx(m, isin,sl,w, eps,dx.dz,beta,psi, nor)
common /global/msc,mx.my,q,T.s

complex#8 msc(3,5), mx(3, 8).my(3, 5), q(206), r(256), s(256)
complex#8 a.al.c,eye, m(3,5), cmplx

real#4 b,bs,sl,w, eps,dx.dz,beta,psi

integer iodd.ior,isin,nor

eye = cmplx(0.0,1.0)

a = eyerwtdz¥sl
al = a#(psi + eyeeps)
b = (0. 50%dz/dx)#n2
bs = isinsb
¢ = —atbeta
call iden{(mx) ior = -~}
call iden(m) ior = 0O
ior = 1 # ior =1
it {ior == nor)
a = al
call recuro(m:a,c,bs)
iodd = 0O
it (nor 2> 1) <€ ior > 1
do iaor = 2,nor {
if (ior == nor) # dip filter the foot
a = al
if (iodd == Q) { # even recursion
call recure{m,a.b)
iodd = 1
¥
else { # odd recursion
call recuroi(m,a,c,b)
iodd = O
}
}
¥
return
end

Recurrence for coefficients

177

M is the current set, Mx is the last set, My is the
next set. My = x1#M + x2#T#M + x3J#T*Mx

After calculations M —2> Mx , My ——> M

and My is ready for more scratch pad work.
subroutine recura(m, x1, x2, x3)

common /global/msc,mx.my,q, 7,8

complex#8 msc(3: 5}, mx(3, 5),my(3, 5), q(256), r(256), s(256)
complex#8 m(3,3), x1, x2

real®*4 x3

call tmul(mx,msc) # dump T#Mx in Msc

call rmul{msc, x3,msc) # dump x3#T#Mx in Msc

call tmul(m, my) # dump T#M in My

call cmul(my, x2: my) # dump x2#T#M in My

call addr(msc,my,msc) # dump x2#T#M+x3#T#Mx in Msc
call cmul(m, xi,my> # dump xi¥M in My

call movr(m, mx) # move M ——> Mx

call addr(msc, my,m) # move x1#M+x2#T#M+x3I*TeMx
return # -2 M

end

Recurrence for coefficients

M is the current set, Mx is the last set, My is the

next set. My = x1#M + x3#Mx

After calculations M -2 Mx, My —> M

and My is ready for more scratch pad work.

subroutine recure(m, x1, x3)

common /global/msc,mx.my,q,T.:s

complex#8 msc (3, 5), mx (3, 5), my(3, 5), q(256), r{256), s(254)
complex#8 m(3,5), x1

real#4 x3

call tmul{mx,msc) # dump T#Mx in Msc

call rmul{msc, x3, msc) # dump x3#T#Mx in Msc
call cmul(m, x1.my) # dump x1#M in My

call movr{(m, mx) # move M ——2 Mx

call addr{(msc,my,m) # dump x13#M+x3#T#Mx in M
return

end

#

subroutine addr(ml, m2, m3)
complex#8 m1(3, 5), m2(3, 5),m3(3, 5)
integer ic/ir
do ir = 1,3

do ic = 1,5 {

m3¢ir, ic) = midir, ic) + m2¢ir, ic)
}
}
return
end
#

subroutine movr{(min, mout)
complex#8 min(3, 5}, mout(3, 5)

178
integer ic,ir
do ic = 1,35 {
do ir = 1,3 <

mout{ir, ic) = mind{ir, ic)
}
b 4
return
end
#

subroutine cmul{(min, sc, mout)

complex#8 min(3, 5), mout(3, 5), sc

integer ic

do ic = 1,3
mout(l, ic)

sc¥min(l, ic)

do ic = 1,4

mout(2, ic) = sc¥min(2,ic)
do ic = 1,9

mout(3, ic) = sc¥min(3, ic)
return
end

subroutine rmul(min, sc,mout)

complex#8 min(3, D), mout(3, 5)

real#4 sc

integer ic

do ic = 1,3
mout(l, ic)

do ic = 1,4
mout(2, ic) = sc#min(2,ic)

do ic = 1,5
mout(3, ic)

sc*¥min(l, ic)

sc#min(3, ic)
return
end

Multiply the input coefficient matrix by T, the
negative of a second-difference matrix
subroutine tmul (min:.mout)
complex#8 min(3, 5), mout(3, D)
integer ic
do ic = 1,3
mout(l,ic) = min(l,ic)-min(2, ic)
do ic = 1,4
mout(2,ic) = 2. 0#¥min(2, ic)-min(l,ic)-min(3, ic)
mout(3, 1) = 2. 0#¥min(3, 1) - minc2,1)
do ic = 2,9
mout(3,ic) = 2. 0#min{(3, ic)-min (2, ic)-min(3,ic—-1)
return
end

Initialize M (3 by 5 complex*8) to I

179

suvbroutine iden(m)
complex*#8 m(3,5)
integer i,
do i = 1,3 {
do J = 1,5 {
m{i, §j3 = 0.0

>

¥
m(i,1) = 1.0
m(2,2) = 1.0
m(3,3) = 1.0
return
end
Calculate the rhs vector

subroutine rhsv{mr,p,rhs, nx)
complex#8 mr{(3,5),p{1),rhs(l)
integer i.nx
rhs(l) = mr(l, 1)#*p(1)+mr (1, 2)#p(2)+mr (1, 3)#p(3)
rhs(2) = mr{2, 1) #p (1) +mr (2, 2)#p (2)+mr (2, D #p () +mr (2, 4) #p (4)
do 1 = 3, nx—2 {
rhs{(i) = mr (3, 1)#p(i-2)+mr (3,) #p{i~1)+mr (3,) #p(i)
rhe(i}) = rhs(ild+mr (3, 4)#p(i+1)+mr (3, S)#p(i+2)
b
rhs(nx—1) = mr(2,) ¥p(nx=-3)+mr (2,) #p(nx—2)+mr (2, 2)#p(nx—1)
rhs(nx~1) = rhs{nx-1)+mr (2, 1)#p(nx)
rhs(nx) = mr(l, 3)#p(nx~-2)+mr (1, 2)#p{nx—1)+mr (1, 1)%p{nx)
return
end

Open or create files named on terminal
Grab input parameters from the terminal
subroutine begin(ifc, ifs, ifm, ifv.nx.,nt,nz,dx,dt,dz, eps, psi,nor)
integer ifc,ifm, ifs, ifv,iperm nor,nt,nx,nz
real®4 dt,dx.dz,eps.psi

real#4 far

integer iarl

iperm = H4+648+4

write(é,07)

write(6,08)

call openr(l,0,ifc)

call creatr(2:,iperm, 2, ifs)

call creatr(3,iperm, 1, ifm)

call opent (4,0, ifv)

nx = iarl(3)
nt = iarl(é)
nz = iarl(7)
dx = far(8)}

dt = far(?)

dz = far{(10)
eps far(1l)

psi = far(l2)
nor = iarl(13)

writ
writ
writ
writ
Q7
08
o9
10
i2
13
retuy
end

LR

subr
comm
caomp
comp
inte
comp
comp
inte
cl

dil

el

o
N
LI I O D I 1 |

o
nnuun

non
333
b b

[~
3
Wun

180

(6,09} nx,nt,nz

e(6,10) dx,dt,dz

e(b,12) eps,psi

e{&,13) nor
format(ix)
format(3x, "RECURSIVE COEFFICIENT MIGRATION")
format{(3x, "Nx=",i10, 1x, "Nt=", i10, 1x, "Nz=",i10)
format(3x, "Dx=", £10. 4, 1x, *Dt=", £10. 4, 1x, "Dz=", £10. 4)
format(3x, "Eps=", £#10. 4, 1x, "Psi=", £10. 4)
format(3x, "Order=", i4)

™

Adapted from Walt Lynn’s algorithm in SEP-15

Pentc solves a constant coefficient pentadiagonal system :

a¥t(k—-2)+b¥t(k-1)+cHrt(k)+d#t(k+1)+ait(k+2) = vhs(k)
for k=1,2,....:n
The first two and last two rows are allowed anomolous
coefficients
Uses the recursion relation:

t(k) = q(k)#t(k+2)+r (k) #t(k+1)+s{k)#t(k)

outine pentc(n, t, ml, rhs)

on /global/msec,mx,.my,q. T, s

lex#8 msc(3,5), mx (3,3}, my(3, 5), q(298), r(256), s(2546)
lex#8 rhs(1),t(1),ml1(3,5)

ger n

lex#8 a:b,c,d,e,cl.dl,el,b2,c2,d2,e2,anl,bnl,cnl,dni
lex#8 an.bn,cn.ct,den,gi,g2,g3,h1, h2, h3

ger i,il,i2,nl, n2, n3

ml (i, 1)

ml(1, 2)

ml(1,3)

ml(2, 1)

ml(2,2)

ml(2, 3)

ml(2, 4)
ml¢3, 1)
ml{3, 2)
mi(3, I
ml (3, 4
ml (3, 5)

ml(2, 4)

ml(2,3)

ml(2,2)

ml(2, 1)
ml(1,3)
ml(1,2)
ml(i,1)

-1
- 2

- 3
-el/cl
-dl/¢ci
rhs(l)/c1

I | I | = R~ i

181
den = 1.0/(c2 + b2¥r (1))

q{2) = —e2#den
r(2) = ~(b2%#q(1) + d2)*den
s{(2) = (rhs(2) — b2%¥s(1))*den
do i = 3)n2 {
il =i -1
iz =1 - 2
ct = a#r(i2) + b
den = 1. 0/(ct#r(il) + a#q(i2) + c)
q{i) = —ex*den
(i) = -(q{il)*ct + d)#den
s(i) = (rhs(i) — s(il)¥ct — aus{(i2))#den
>
gl = an#q{(n2) + ¢n
g2 = an#r(n2) + bn
g3 = rvhsi(n) - an#s(n2)
ct = anl#r(n3) + bnl
hl = ct#q(n2) + dnl
h2 = ani#q(n3) + cnl + ct#r(n2)
h3 = rhs(nl) - anl#s(n3) — ct#s(n2)

den = 1. 0/(gi#*h2 — g2#hl)
tin) = (g3%h2 ~ g2#h3)#den
tinl) = (gl#h3 — g3#h1l)#*den
do i = n2,1,-1 £

il =1 + 1
igd =i + 2
(i) = q(i)#t(i2) + r(id#t(il) + s(i)

}
return
end

Miscellaneous 182 Wit, Wisdom, and Fortune

There was a young poet named Dan,
Whose poetry never would scan.
When told this was so,
He said,"'yes, | know,
It’s because | try to put every possible syllable into that last line that | can."

Niklaus Wirth has lamented that, whereas Europeans pronounce his hame
correctly (Ni-klows Virt), Americans invariably mangle it into

(Nick-les Worth). Which is to say that Europeans call him by name, but
Americans call him by value.

WHERE CAN THE MATTER BE

Oh, dear, where can the matter be
When it’s converted to energy?
There is a slight loss of parity.
Johnny’s so long at the fair.

A truly wise man never plays leapfrog with a unicorn.

Kleptomaniac: A rich thief.

On his first day as a bus driver, Maxey Eckstein handed in
receipts of $65. The next day his take was $67. The third day’s
income was $62. But on the fourth day, Eckstein emptied no less than
$283 on the desk before the cashier.

"Eckstein!" exclaimed the cashier. '"This is fantastic. That
route never brought in money like thist What happened?”

"Well, after three days on that cockamany route, | figured
business would never improve, so | drove over to Fourteenth Street and
worked there. | tell you, that street is a gold mine!”

Monday: In Christian countries, the day after the baseball game.

You may be recognized soon. Hide.

""The shortest distance between two points is under construction.”
-- Noelie Altito

Do not sleep in a eucalyptus tree tonight.

A penny saved is ridiculous.

SEP-26

