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Half-Plane Space-Time Prediction Filters

Larry Morley and Francis Muir

Abstract

A 2D lattice filter is presented which extends the spatial range of a seismic dataset in
a stable manner. The sampled region of the 2D autocorrelation depends on the chosen region

of support of the reflection coefficients.

Stability of Prediction Filter

In the practical application of wavefield operators to seismic datasets, spatial trunca-
tion effects are often troublesome. One way to deal with such problems is to extrapolate
these datasets off their side boundaries with a 2-D filter that is recursive in the spatial
direction,x (see figure 1). Not all "reasonable’ linear filters, however, will give stable pred-
ictions as we move along in x. An example is the standard least squares prediction filter, h,

satisfying the design criterion:
min 3 | 1ps 1=k *pe 2112
data

where “**” means 2D convolution and p is the recorded data. At first glance this might seem
to be a useful prediction filter, but closer examination shows that its stability is not

guaranteed.

Stability will only be realized if our prediction error filter, A(z_,z;) has all its poles out-
side the unit sphere in (z,,2;) space. A, need not be "2-D minimum phase" since we will
require causality in the x direction only. A good discussion of 2-D minimum phase and
causality as well as a wealth of references to the problems of 2-D linear prediction can be
found in Marzetta, ‘80.
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FIG. 1. Prediction of data p; ., by application of filter h(t,x) to known data

It is well known that in 1-D prediction the Levinson recursion can be used to construct
a stable inverse filter to a time series. An analogous procedure can be used in 2-D. As in the
1-D Burg technique we can construct a prediction error filter A(z,,z;) which minimizes the
sum of forward and backward (in the x direction) prediction error energy. If this prediction

error filter is constructed by a 2-D Levinson recursion of the form (1)
A=Az, )+ ™ (8) A D (2, 7 )2, ] (1)

then A™ will be a stable approximation to the true A as long as ¢™(z;)<1 for z; on the unit
circle. The reader should note that the reflection coefficients, ¢™(¢), are now functions of

time instead of scalars as in the 1-D case.

Using an argument analogous to Claerbout “76 it can be seen that the minimization of

forward and backward prediction error energy is equivalent to minimizing the error functional

E@) =3[ f—c*®|?+]|b’—c*f*|?] (2)
z ¢

1) All convolutions (denoted by lower case *s) are taken over time only.
Y
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with respect to the reflection coefficients, where

fril=fr_cnapn (2a)
and

b"”:b"—c"‘*f" (2b)

are the 2D forward and backward prediction errors of order n+1.

Proceeding with the minimization, we obtain:

Yok = Y S —c®)+f*Hb —c*f *)]=0 (3)

or

e[ B+fer]1=[b " +f%"] (4

Transforming (4) from (x,t) space to (x,z;) space, it is apparent that c(z;) is bounded
by unity for all z;. In particular it is less than unity on the unit circle and our prediction filter
is therefore stable. We can also see from the (x,w) transformed version of (4) that the 2-D
prediction problem can be reduced to a series of 1-D Burg prediction problems - one for each
temporal frequency in the data. Thorson (this report) shows some examples of seismic

datasets extended with this frequency domain algorithm.

Choice of Reflection Coefficients

In practice it is not necz=ssary to solve for an infinite number of values of ¢ with each
iteration. If we formulate the minimization problem with the assumption that the only non-
zero c’s are cg through ¢, _, and that data exists only for time values O to n-1 then equa-

tion (4) reads:
n-1 N .. M=l n-l . N .
2 2 Lt fiib )= ) e ) (b T e+ fiifie?) 5 §=0,,m—1 (5)
i=0 = k=0 i=0 z

where the x indices have been suppressed for notational simplicity.

Having a finite length ¢ vector limits the region of support of the prediction error filter in
(x,t) space. Figure 2 shows the shape of the 2D prediction error filters (PEF’s) up to order
4 for the case of a two point c. The PEF’s are, in general, diamond shaped for a compact
choice of c¢c’s. The inverse autocorrelation island of the PEF’s (figure 3) is also diamond

shaped but centred on the origin.
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FIG. 2. Shape of 2D PEF’s up to order four for the case of two-point reflectivity.

From figure (3) we can see that the choice of reflection coefficient structure deter-
mines the region of 2D lag space that is effectively sampled. If the data contains high dips
it is important to have a large number of c’s so that the PEF design is sensitive to these
events. In such cases a two point reflectivity would clearly be a naive choice of c-

structure.

Further Work

Further work needs to be done to get a practical algorithm for the recursive prediction
problem. It is desirable to avoid doing a 2D convolution of the PEF on the data since the PEF
size grows exponentially with prediction order. Hopefully a knowledge of f ("), 5{*) and ¢

will be sufficient for the prediction problem as well as the PEF design problem.
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FIG. 3. General shape of A(x,t) and R~1(x,7) for a finite and compact c-structure.
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Money is the root of all evil, and man needs roots

Do what comes naturally now. Seethe and fume and throw a tantrum.

Remember that whatever misfortune may be your lot, it could only be
worse in Cleveland.

If you think last Tuesday was a drag, wait till you see what happens
tomorrow!

The brain is a wonderful organ; it starts working the moment you get up
in the morning, and does not stop until you get to school.

Il brilgue: les t-oves libricilleux

Se gyrent et frillant dans le guave,
Enm-imés sont les gougebosquex,

Et le m-omerade horgrave.

Tonights the night: Sleep in a eucalyptus trees.

If all be true that | do think,

There be Five Reasons why one should Drink;
Good friends, good wine, or being dry,

Or lest we should be by-and-by,

Or any other reason why.

Troubled day for virgins over 16 who are beautiful and wealthy and live
in eucalyptus trees.

Shaw’s Principle:
Build a system that even a fool can use, and only a fool will
want to use it.

| really hate this damned machine
| wish that they would sell it.

It never does quite what | want
But only what | tell it.

Captain Penny’s Law:
You can fool all of the people some of the time, and some of
the people all of the time, but you Can’t Fool Mom.
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