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Analysis of Focusing in Retarded Snell Coordinates

Alfonso Gonzdlez-Serrano
Mathew J. Yedlin

Abstract

In previous reports (see Gonzdlez and Claerbout; p181, SEP16), the retarded Snell
coordinate frame wad developed and then applied to the problem of velocity analysis. A new
coordinate frame was established, for which energy was focused to the tops of skewed
hyperboloids. The elegant advantage of this coordinate system is that, after downward
continuation, and application of the appropriate imaging condition, the velocity is easily
determined in the new offset-time coordinate system. The retarded Snell coordinate system
inspired the authors to investigate the quality of focusing using a ray-tracing approach, and

then comparing the result with wave equation techniques.

Introduction

Given a gather in offset-time, (h,t) space, it is clear that in the process of downward
continuation to zero time and zero offset, energy must move along the group velocity lines.
For the case of constant velocity, these lines will be straight. These straight lines can of
course be determined by application of the formal ray-tracing equation (Cerveny ef ol
1977, Yedlin 1978), such equations are valid in the case when there is anisotropy, and
the direction of the phase velocity vector is not the same as the group velocity vector.
Another advantage of direct application of the ray-tracing equations is that they can be
transformed into any coordinate system. In what follows, the ray equation will be derived,
and then applied to the problem of focusing. The ray tracing results will be compared with
those obtained using the wave equation. For the ray tracing, the amplitudes are not calcu-

lated, but these can be qualitatively determined by looking at the instantaneous ray density.
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Theory

The general ray tracing equations, which will be derived for a 2-dimensional constant
velocity medium, can be best obtained by using the dispersion relation for the particular

wave equation under consideration. Let us consider a general dispersion relation of the form:
F(p,g) =0

where p =k;/w and g =k,/w, and k, = horizontal wavenumber, k, = vertical

wavenumber.

The frequency is scaled out of the dispersion relation, as we do not want our ray trace
equations to have any explicit frequency dependence. Also it is convenient to work in slow-

ness coordinates, which are the duals of the displacement coordinates.

Now consider a ray whose coordinates (x,z), are parameterized by the time t along the
ray. Then the components of the tangent vector to the ray are proportional to the group
velocity. The group velocity in turn is proportional to the normal derivatives of the dispersion

relation, F(p,q) = 0. Therefore,
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For most cases, it is easy to calculate Ep—and a—q— What remains is to determine A.

The parameter A\ can be evaluated by looking at the definition of a wavefront. A wave-
front is defined to be the locus of points such that at a particular ¢ = 7(z,z) defines the
location of the wavefront. Differentiating the above relation as a function of £, and using

the chain-rule, we get

Or dz | 87 dz
V= rat ot (2)
The quantities %—and g%are the wavefront normals p and g. Substitution of equation (1)
into (2) results in:
oF  ar |
A= —+ g=— 3
[P ap 3 q (3)

The formalism of equations (1) (2) (3) is convenient, in that is can be applied to any disper-
sion relation. There is no need to get involved in complicated geometric projections, as in

the case if the dispersion relation departs from a circle. At this point a series of examples
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will be given below for different dispersion relations.

Examples

In the next examples, the following basic geometry will be considered (figure 1)

FIG. 1. Zy

A, Acoustic equation

The dispersion relation for this case is given by

Fp.g) = p?+q%~ 2= 0

v
differentiating /" with respect to p and g we get
oF
ow | _[%
oF | =
8q 29
and
- 1
A = (2p2 + 2(]2) b= ;)—2—

using (1) we get the ray equations
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(a) -

FIG. 2. This figure illustrates the way energy moves in the (z,f) plane as we extrapolate
with the 90 degree wave equation. The figure was computed starting with some hyperbolic
event for a fixed depth, subsequently extrapolating the wavefront using the ray equations.
The process was done at fixed increments of depth, represented as slashed lines in the fig-
ure. In (a) the extrapolation was done with the same velocity as the velocity used to gen-
erate the hyperbolic event, we get a perfect focus at £ = O since all the rays are traveling
at the correct speed for all angles. In (b) we used a 5 % lower velocity in the extrapolation,
now the energy is focusing at £ < 0, however now the speed at which the wavefront moves
has become p —dependent, and we no longer achieve a perfect focus. In (c) the extrapola-
tion velocity was 6% higher, now the focus is at ¢ > 0, and again the wavefront velocity is
dependent on p.
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(b)

(c) t
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2
d |£{ _ |vP
'dT z - ,Uzq (4)
Figure 2 shows an example of using these ray-tracing equations.
B. Fifteen degree version of A,
For the fifteen degree equation the dispersion relation is given by
F(p,g) = q + pPv _ 1 _ 0
p’q q 2 )
differentiating F* with respect to p and g we get
oF
ép | _ pv
aF | =
og
solving for A we get
-1 2v
N P - T
i 7 pz'u2 + 2
and the ray equations are
_2pu®
d z pz'uz + 2
ar 2v (6)
z pz'uz + 2
dz - 2 dz _ o . . .
Note that as p-0 Frl pv* and Fral v, this is of course just the paraxial approxi-

mation to (4), since qv® = v V1 — p?v® becomes v as p approaches zero.

Figure 3 illustrates the behavior of these new ray tracing equations.

C. Forty-five degree version of A,

For the forty-five degree equation the dispersion relation is given by

differentiating F' with respect to p and g we get
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pv
aF (1 - -Jl—pzvz)2
dp
= 1
aF
oq
for A we obtain
1+ —3——p4'u4
16
A= 1
v (1 - _af_pzyz)z
the ray equations become
__pv®
x 1+ %—p’*v‘*
d _
| | = 1 (©)
1+ '11? 41}4

We can check that these ray equations have also the correct asymptotic behavior for

ray parameters p close to zero. Figure 4 shows an example using these equations.

D. Retarded Snell Coordinates,

Before proceeding with the analysis we must first redefine the geometry (figure 5).

The coordinates are defined as follows:

" I ~pox + Z 29%% czsﬂo
z + 2z tandg
z'| = ()
z
2

The utility of the above coordinate derives form the fact that, for the particular Po
chosen, as we downward continue, z” is fixed. Also, the imaging condition for £' is simply

2 cos
t = 'U_o' Thus, applying the transformation (7) to the original data, and then migrating,
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FIG. 3. In this figure we are extrapolating the wavefront with the 15 degree equation. The
figure was computed using angles 4 < 30° . We are again extrapolating the wavefield at
fixed increments of depth, represented by broken lines in the figure. In (a) the extrapolation
velocity equals the event velocity. We can check that for angles close to 0° the energy
arrives very close to { = 0, however for wider angles the energy is traveling slower than
required for correct focusing. In (b) the extrapolation velocity is 5% slower, so energy
focuses at ¢ < 0. In (c) the extrapolation velocity is 5 % faster. Note that even thou the
rays close to 0° focus eatlier in time, since the 15 degree equation moves energy slower
than required for wider angles, the apparent best focusing occurs with this higher velocity
than with the exact velocity. This is just the very well known fact that overmigration gives

better results with the 16 degree equation.
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FIG. 4. In this figure we are extrapolating the wavefront with the 45 degree equation. The
figure was computed using angles ¥ < 609 . See figure 3 for details.
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results in the top of the new skewed hyperbola remaining fixed.
city analysis (see Gonzdlez and Claerbout; p190, SEP16).
To find the appropriate ray equations, we need to compute

of the chain rule to ' in (7) results in

dzx dz
z ;i?— + Et—tam?g

1

a_
dt

But

dx' dz' dt'
dt’' dt' dt

dz' dz' dt'
dt’ dt' dt

Therefore

dx dz
z —(F + a?—tam?o

' dt
Z &
dt
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What remains are simple calculations which incorporate previous results. However, a

word is in order here about sign convention. From figure 5, we notice that as we project the
ray from the geophone back to the source, as both df and dx are negative, %:—- is positive.

Similarly, as t is decreasing, 2' is increasing. Therefore,

Sndx———sndz
M ar| T T8

With the sign convention determined, the rest is straightforward. From (7) we obtain

ar _ 4 _, dzx  cos¥ dx
dt Pogy v df
and form (4) we already have
2
d | v'p
dt |z]| ~
vig

Substituting these equations into (9), and using the correct sign convention, we have the

final result for the ray equations:

ot — B g2
90
A 1 — popv? — goqu?
qr (10)
z qu?
1 = popv? — goqu?

cos?
where gq = 9.
v

We notice, however that the p and g in (10) are those which correspond to the stan-
dard coordinate frame. To find the p' and g' in the new coordinate system we use (7) and
find that

ot' - ot 8z
oz’ oz oz Po

(for z fixed % = 1). Or
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tl

(a)

FIG. 6. This figure shows the wavefront extrapolation in retarded Snell midpoint coordinates.
At the surface the new coordinates require to apply a linear moveout correction, we used
pv = 0.5 for this correction. In (a) we used the correct extrapolation velocity, so all rays
arrive to the focusing point in phase. In (b) the extrapolation velocity is 5 % slower. In (c)
we are using a 5 % faster velocity. As we downward continue the wavefront, the energy
moves towards the top of the skewed hyperboloid, independently of the extrapolation velo-
city as can be appreciated in the figures.
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Now g:— is of course p. Therefore, if all variables are seen in the slanted coordinate

system, we simply replace p in (10) by p' + pp, where p' is the measured g;t:,— Accord-
ingly we find for g:
g = -:7[1 —'ua(p'+po)2]

The final result is

172
dz’ 9o (@' + po) V¥ ~pov [1 - v (p' "‘Po)z]
e E (11a)
9o [1 —Po (p' +po) v¥ —gov [1 -vE(p +P0)2]
1/2
dz' v [1 - v? (p' +p0)2]
dt' = 2 172 (11b)
[1 —po (P +po) v® — g [1 ~v* (p +P0)2]

In (11) all variables are in the slanted and retarded coordinate system. It is (11) that

describes the propagation of energy in the (z',t',2') volume. (Figure 6).
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