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3.0 MIGRATION, DEPENDENCE ON VELOCITY

Chapter 1 described the main ideas in migration and wave-field continuation. It
also presented Fourier techniques for use when the velocity is laterally constant.
Chapter 2 developed wave-equation techniques for use in Fourier domains or time and
space domains. The space domain is mandatory when the velocity is laterally variable.
In this chapter we will see what actually happens when you migrate. Migration process-
ing depends on an assumed velocity model. It is particularly sensitive to lateral varia-
tion in velocity. Even in stratified velocity, migration has both physical and cosmetic
effects on the data. We will identify what can go wrong: velocity error, dispersion, side-
boundary reflection, and instability. We will see how to quantify and suppress the

effects of errors.

Migration in (z.z,w)-Space

Recall the phase-shift method from Chapter 1. The idea was to iterate on a two-
step process. The first step was to downward continue with exp [ik;(w.k;)Az]. The
second step was to sum over all frequencies. Summation has the effect of evaluating
the wave at {=0. There is an optional, additional step, which is to subtract the wave at
t=0 from the dataset. If you don't do this optional step, it probably won't matter
because you probably won't look at the data before t=0. However, in practice, the
sampling of the w-axis forces periodicity in ¢, which later shows up in z. So some-

times the optional step is worthwhile.

With lateral-velocity variation, things proceed in a very similar way. The major
difference is that the database is represented in the space of (v,z) rather than (w,k;).
The downward-continuation step is now done in two stages. The first stage is the thin-
lens, phase-shifting part. The second stage is a Crank-Nicolson, tridiagonal, diffraction

stage.
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Sensitivity of Migration to Velocity Error

Figure 1 shows how the migration impulse response depends on velocity.
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FIG. 1. Migration of a data impulse as a function of velocity.

Significant timing error will be assumed to be about a half-wavelength. Observa-
tionally the ratio of traveltime to wavelength is usually a hundred or less. (Notable
exceptions are when much of the path is in water or else at time depths greater than
about four seconds.) Consequently the velocity accuracy required for 90-degree migra-
tion is about 1%. For 45-degree migration velocity error could be larger by the square

root of 2. This is illustrated in Figure 2.

Velocities are rarely known this accurately. What is the utility of processing in

which erroneous time shifts exceed a half-wavelength?

Migrated Time Sections and Lateral Velocity Variation

The discussion on traveltime depth (in the section, "Four Wide-Angle Migration
Methods") explained the industrial practice of avoiding reference to depth on a

migrated section. This was done by use of a traveltime depth + defined by

A (1)
dz Vyock V half
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45°

timing error

FIG. 2. Timing error of the wrong velocity increases with angle.

The purpose of the transformation is to reduce the velocity sensitivity of the data
display. Sensitivity is reduced because a flat horizontal reflector may be migrated with
any velocity without affecting its position on a migrated time section. The effect of
velocity error increases with dip as can be observed by noting that the downward-

continuation operation
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is converted by (1) to
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Now we notice that the velocity v multiplies the stepout k,/w. so an error in one is

exp {'iw AT

like an error in the other. They are conveniently lumped together and called an angle
error. In practice, it is often valid to say that 15° migration requires little velocity

accuracy while 45° migration demands a lot.

All of this "conventional wisdom' becomes doubtful in the presence of lateral velo-
city variation. There seems to be no satisfactory, automatic way of dealing with the
data over the quantitative range of geological parameters which commonly occurs. But

the downward-continuation equations clarify the nature of the difliculty.
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Even in the presence of lateral velocity variation, the square root in (2) is inter-
pretable in a "local plane wave'" sense, and it may be used to define a reasonable equa-
tion for downward continuation. That is, we have some local spatial wavelengths given

by

v(z,z) k. (z.2)
W

o

k(z2) = Sy

1i-

(4)

2] 1/2

The difficulty arises when we try to convert to traveltime depth with (1). The issue is
whether to let the velocity in (1) be laterally variable. This will be tried, not because it
is justifiable, but because it leads to a definition of migrated {ime secfion, an important

industrial product. The definition is given by any reasonable implementation of

2112

v(z,7) k. (x.7)
3

i~

kz.T) = @ (5)

The definition of migrated time section contains a serious pitfall which only shows
up when the velocity is laterally variable. The (z,z) coordinate system is an orthogonal
coordinate system but the (z,7) system will not be orthogonal [unless v{z)=const ], so
equation (4), which basically says that cos ¥ = (1 — sin®3)'/%, is not correctly inter-
preted by (5).

To avoid this pitfall, the velocity for time-to-depth conversion in (1) can be kept
independent of z, call it ¥(z). It is like a retardation velocity. Since 7(z) does not
depend on z the conversion from z to T is a simple scaling given by (1), which

means the extrapolation equation is transformed by

8 _ dz 8 _ -0
ar  dT 8z v 0z (Ba)
kr = Vk, (6b)

instead of the complicated chain rule expression which would be required if v

depended on =x.

In principle, ¥(z) could be any function of 2z, but in practice it is convenient to
take it to be some horizontal average of wv(z,z), say 7(z)= «v(z,z)>». This
definition ensures that (6b) produces a migrated time section where that is possible,
by virtue of the velocities being equal. Where the velocities are unegual, the difference
of 1/v and 1,/¥ occurs in a lens-type term which becomes an essential part of the

downward continuation. In this chapter we will see some of the effects of the lens term.
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You can’t time shift in the time domain.

You might wish to do the migration in (z,¢ )-space, as described at the end of the
previous chapter. Then the thin-lens stage would be implemented by time shifting
instead of multiplying by exp fiw [v(z,2)"! —-T(2)"1]Az}. Time shifting is a delightfully
easy operation when data is to be shifted by an integral amount of sample units. But
repetitive time shifting by a fractional number of digital units is a nightmare. Mul-

tipoint interpolation operators are required. Even then, pulses tend to disperse.
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3.2 PHYSICAL AND COSMETIC ASPECTS OF THE 45-
DEGREE EQUATION

Dip filtering and gain control are two processes whose purpose seems to be largely
cosmetic, that is, the changes they make to the data are planned to improve its
appearance. Criteria invoked to choose quantitative parameters of such processes are
often vague and relate to human experience or visual perception. Objective criteria as
signal and noise dip spectra are rarely used in a quantitative way. But the importance
of cosmetic processes is not to be underestimated. On many occasions a comparison
of processing techniques (for choice of contractor?) has been frustrated by accidental
change in cosmetic parameters. Nor are cosmetic processes totally outside the world
of wave-equation analysis. Indeed they can be made even more effective when built into

a process rather than added on at the end.

Dip filtering often comes under suspicion as being a deceptive violator of the pur-
ity of real data. Indeed it can be misused to create events at will. But dip filtering
does occur naturally and it also occurs as a by-product of various other processes. Qur

purpose here is to see how it can be used to advantage in a perfectly justifiable way.

False Semi-Circles in Migrated Data

A commonly missed opportunity is the failure to make effective use of dip filtering
to suppress multiples. Without going into a detailed exposition of the theory and pro-
perties of focused multiple reflections, it can be stated that multiples are unlike pri-
maries in one important respect. Their strength may change rapidly in the horizontal
direction. They need not be spread out into broad diffraction hyperbolas as primaries
must. This difference arises because they often spend much time focusing themselves
in the irregular, near-surface areas. Common evidence for this behavior is contained
in the appearance of wide-angle migrated sections. Such sections often show semi-
circular arcs coming all the way up to the surface. Such arcs are obviously not primary
reflections. They can be multiples or unexplained impulsive noise. In either case they

can be partially suppressed without touching primaries.
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Zapping Multiples in Dip Space

Think of the migration of CDP stack as downward continuation in {(w.k,.z )-space.
Ordinarily, velocity increases with depth. As the downward continuation proceeds the
velocity cutoff at the evanescent point bites out more and more area from the (w,k,)-
space. Energy beyond this cutoff does not fit the primary wave propagation model, and
it should be suppressed as soon as it is encountered. Such noise suppression can lead

to a considerable drop in total power at late times.

Mixed Appearance of Dip-Filtered Data

An objection often raised against dip filtering is that it can give data a mized
appearance. By mized is meant that adjacent channels appear to have been averaged
and that they are no longer independent. This is true and it is inevitable at late times.
It is inevitable because the horizontal resolving power of reflection data decreases with
time. There are two reasons for decreasing lateral resolution. First, dissipation causes
high frequencies to disappear. Second, even at constant frequency, horizontal
wavelengths must increase as rays reach the higher velocities found at greater depths.
It is unrealistic to ignore this fundamental limitation and imagine that channels should
always have an appearance of independence. If a mixed appearance is to be avoided
for display purposes then I advocate removing the low-velocity, coherent, signal-

generated noise and replacing it by low-velocity, incoherent, Gaussian, random noise.

Accentuating Faults

It often happens that the location of vil is controlled by faulting. But the dominat-
ing effect of stratified reflectors may overwhelm the weak diffraction evidence of fault-
ing. This situation calls for a cosmetic process which weakens zero and small dips,
accentuates dips in the range of 10 to 80 degrees and then represses the very wide
angles and evanescent energy. As with frequency filtering, sharp cutoffs are not desir-
able because of the implied long (and in space, wide) impulse response. It turns out
that adjustable parameters that help achieve these goals are already available in the

45-degree equation.
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Decomposition of the 45 Degree Equation into Effects

There are various means of entering viscosity into wave propagation theory. A well
known means is to introduce a complex velocity into the w®/v® term of the scalar wave
equation. This is much like introducing a complex w. It may be recalled from Fourier
transform theory that multiplication of a time function by a decaying exponential
exp(—at) is the equivalent of replacing =iw by —iw+a in the transform domain. In a
later section on impedance functions it is shown that replacing —iw/v by (~iw v)?
describes the so-called "constant Q" absorption, which accurately matches laboratory

measurements.
Performing two iterations of the Muir square root expansion we get an expression

like

X2

-twie +

‘l.Vk,(“) = —diwy +

7 1)

—1:6322

In this expression X? denotes V%2 (or the positive definite matrix
(Vo) (ve,)" = -Vo,, V). Previously, in expressions like (1) we have always written
simply —iw, never expecting to want to make the distinction between Wo. W1, OT Wa.
Indeed, we usually want each w to have the same real part. However, by introducing

different imaginary parts we can introduce a viscosity which is angle dependent.

For example, we could choose each =~iws in (1) to be the constant § impedance
function (-iw)”. The implied migration equation would then back out presumed fre-
quency dissipation in the rocks. But that would lead to a ridiculous enhancement of
high frequencies. A better idea would be to keep wp non-viscous but choose
=tw; = —iwz = (~iw)”. With this idea there would be no attempt to back out the Q
of the vertical path but there would be compensation of non-zero offsets to the zero-
offset.

The choice of different real parts for the —iw; functions creates an amplification
or attenuation which depends on dip. We could select the real part of —iw; for the for-
mentioned compensation of offset for §. Then we could use the real part of —iwy for
the purpose of suppressing evanescent energy. It would be simple if we could choose
the real part of —-iwz so as to attenuate all dips above (i.e. velocities below) the
medium’s cutofl. What happens is almost as good but not quite as simple. Larry Morley
discovered (SEP 18, p 109-119) that the absorption turns out to be extremely strong at
3/4 of the medium velocity but. unfortunately. not so strong at lower velocities. (The
45-degree dispersion relation curve hits zero at Vk /o = 4,3.) The width and depth of
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the absorption is somewhat controllable without messing up the migration, but massive

very low velocity noise is better eliminated by some other means. In summary,

Main effect of terms in the 45 degree equation

term Real part Imaginary Part
(influences traveltime) cosmetic physical
&, | time/depth conversion t.v. filter absorption

@, | migration/stacking vel. | fault enhancement | @-offset compensation

@z | migration/stacking vel. | steep dip suppress evanescent junk

Gain Control Does Dip Filtering Too

If data is exponentially gained upward before migration, then hyperbola flanks are
boosted in strength before migration rmoves them in with the hyperbola top. This is
certainly a dip-enhancement feature. Let us consider this more specifically. Take the

Z ~transform of a time function a,.
A(Z) = ag+ aZ + aZ%+ -
We now define the exponentially gained time function by
t4(Z) = ag+ a,e°Z + age®Z2+ - -

The symbol ¢ is indicative of the exponential gain. Mathematically *+ means that the Z
is replaced by e®Z. Consider a polynomial multiplication or convolution of time func-

tions
c(z) = A(Z)B(Z)
Obviously,
tC = (14) (1B)

This means we can do exponential gain either before or after convolution.

Think of the downward-continuation operator exp(+ik,z) for some fixed z and
some fixed k,. It is a function of w which may be expressed in the time domain as a

filter a;. But the hyperbola flanks move upward on migration. So the filter is
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anticausal which we can indicate by

- 1 1 .
A(Z) = a°+a1—z—+a2-—z—5+ .
Exponentially boosting the coeflicients of positive powers of Z is associated with
diminishing negative powers. So 14 has a weakened precursor; it tends to attenuate

flanks rather than moving them; and it is said to be viscous.

A purely physical point of view dictates that cosmetic functions like gain control
and dip filtering should be done after processing, say +(48). But this is equivalent to
(t+A)(t+B), which means using a viscous operator on exponentially gained data. In prac-
tice it is common to forget the viscosity and create A(1B). 1 like such cosmetics in
the sense that I think dipping events carry more information than flat ones. But going
beyond 45-degree dip, attenuation seems to be preferable. The decomposition of the
45-degree equation into the three main parts gives much fAexibility for reaching toward

these goals.

Rejection by Incoherence or Rejection by Filtering?

We should avoid the pitfall of judging a supposed non-cosmetic process by a
cosmetic eflect. I once got caught. The process was migration before stack. The
feature deemed desirable was the relative strength of the steepest clear event on the
record, a fault plane reflection. But even gain control can affect dip spectra! 1 hoped
the process was working by correctly eliminating some of the rejection of steep dips by
CDP stack. Perhaps it was, but how could 1 know whether this was really happening or
whether the process had an accidental ability to enhance dips by spatial filtering?

The Substitution Operator

The upward + operator has been defined to mean the substitution Z - Ze®. The
main property of this operator is that if C=AB then tC = (14)(t+B). This property
would be shared by any algebraic substitution for Z, not just the one for exponential
gain. Another relatively trivial substitution may be used to achieve time-axis stretch-
ing or compression. For example replacing Z by Z? stretches the time axis by two.
Another substitution which has a considerably deeper meaning than either of the previ-

ous two is the substitution of the constant g dissipation operator (—iw)?. In summary,
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Substitutions for Z-transform variable Z

[all preserve C(Z)=4(Z YB(Z)]

Exponential Growth Z - Ze"®

(iw->iw+ a)

Time expansion (a > 1) Z - Z=

(Inverse) Constant § dissipation | —igw - (—iw)?
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3.7 ABSORBING SIDES

Computer memory cells are often used to model points in a volume containing
propagating waves. Regrettably, the number of cells is necessarily finite, though we
often wish to model an infinite volume. Waves in the computer reflect back from the
boundaries of the finite computer memory although we would usually prefer that the
waves had gone away to infinity. To avoid the need for infinite computer capacity it is
natural to try to develop absorptive side boundary conditions. In this section we will
develop some highly absorptive boundary conditions, not as absorptive as an infinitude

of appended zeros but obviously much cheaper.

Truncation at the Ends of the Cable and at the Ends of the Survey

In exploration we have two kinds of horizontal truncation problem. The first of
these is at the end of the geophone cable. This problem mainly affects common-
midpoint stacking. The second is at the geographical boundaries of the survey. This
problem mainly affects migration. In each case the ideal solution is not an infinite
amount of zero padding. The ideal solution is some kind of a horizontal extrapolation
of the dataset. Two important ingredients to such an extrapolation are a noise model,
and a wave-propagation signal model. Such an ideal extrapolation is rarely, if ever,
approached in practice. Usually we settle for zero padding and possibly some tapering.
For stacking, the zero padding has no cost. The migration situation seems to be analo-
gous to stacking in that hyperboloids are collapsed to points. Actually the two situa-
tions are different because of the data itself. With migration we can have reflectors
dipping either downward or upward toward the end of the section. When the energy
dips downward, then migration will tend to move the energy back into the section. This
is also the case with stacking in that energy moves from the far end of the cable back
toward zero offset. It is in the other situation, the one which occurs only with migra-
tion, which is the troublesome one. In this case energy will tend to move off the mesh
on which the data is defined. Again, philosophically, the best solution is some kind of
an extrapolation of the dataset. In practice, the zero-slope side condition is perfect
when dips vanish, and it is tolerable when they are small. Difficulty occurs when

upward dipping energy is seen at the edges of the survey. On migration it tends to
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falsely reflect back into the dataset. Such spurious reflections are usually objection-
able.

The problem may be reduced by appending zeros to the sides o} the dataset, thus
providing the dipping energy with a place to go. This is helpful but it does not solve the
whole problem for two reasons. The deeper and more basic reason is that some kind of
an edge diffraction will still be produced. A secondary reason is that the zero padding
cannot continue for an infinite distance. A diminishing value-for-cost requires that the
zeros terminate somwhere beyond the end of the survey. At the termination there is a
reasonable chance of finding remaining energy which we would prefer to absorb rather
than reflect. It is this problem which Engguist solved. The main practical benefit is the
economic one of reduction in the number of padded zeros. To understand Engquist's

solution we begin with a different problem, which is conceptually easier.

Engquist Boundaries for the Scalar Wave Equation

The simplest boundary condition is that a function should vanish on the boundary.
A wave incident onto such a boundary reflects with a change in polarity (so that the
incident wave plus the reflected wave will vanish on the boundary). The next-to-
simplest boundary condition is the zero-slope boundary condition. It is also a perfect
reflector, but the reflection coeflicient is +1 instead of -1. Two points at the edge of
the differencing mesh are required to represent the zero-slope boundary. The most
general boundary condition usually considered is a linear combination of function and
slope. This is also a two-point boundary condition. It so happens that our extrapolation
equations contain only a single depth derivative so that on the z-axis they are a two-
point condition. Observing this, Bjorn Engquist recognized a new application for extra-
polation equations. Many researchers in other disciplines are interested in forward
modeling, that is, evolving forward in time with an equation like the scalar wave equa-
tion, say P,, + P,, = Py /v® These people severely suffer the consequences of limited
memory. Engquist’s idea was that they should use our extrapolation equation as their
boundary conditions. Suppose they desire an infinite absorbing volume surrounding a
box in the (z,z)-plane. Then they need a boundary condition going all the way around
the box. They could use our downgoing wave equation on the bottom of the box and our
upcoming wave equation on the top edge. The sides could be handled analogously with
an interchange of z and z. This idea was thoroughly tested and confirmed by Robert

Clayton. An example of one of his comparisons is in figure 1.
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FIG. 1. (Clayton) Expanding circular wavefront in a box with absorbing sides (top) and
with zero-slope sides (bottom).

Engquist Side Conditions for the Extrapolation Equations

In data processing we use the extrapolation equation in the interior of the region
under study. This is unlike the forward modeling in which the full scalar wave equation
is used in the interior and an extrapolation equation can be used on the boundary. The
scalar wave equation has a circular dispersion relation whereas the extrapolation equa-
tion ideally has a semi-circular one. Reasoning by analogy, Engquist speculated that a
quarter-circular dispersion relation might be some sort of ideal side boundary for
wave-extrapolation problems. To be more specific and immediately applicable he pro-

posed that the quarter circle be approximated by a straight line. This is depicted in
figure 2.

The advantage of the straight-line dispersion relation is that in the space domain it
represents a very simple, first-order, differential equation. A first-order equation has
first derivatives which can be expressed over just two data points. Thus it can be used
as a conventional, two-point, side-boundary condition. The right-side equation on figure

2 defines the boundary dispersion relation D.
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vk k
0= 2~ 1+ const = = D(wkg.k,) (1)
© ©
In (t,z,2)-space it is
a 8 a
= — + — + const — 2
0 = (v 5+ 5 +const 5)P (@)

In retarded time, 3,782z may be eliminated with the interior equation.
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FIG. 2. Dispersion relation of simple absorbing side conditions.

A mathematical point of view which is non-physical is to imagine some peculiar
physics which prescribe that the physical equation which applies in some region is just
that which has the dispersion relation of the absorbing side condition. Aside this ficti-
tious region is another in which the extrapolation equation applies. At the point of con-
tact the solutions must match. It may come as no great surprise that the smallest
boundary reflections occur where the two dispersion relations are a good match to
each other. So the slope of the straight line is picked to form a good fit over the range
of angles of interest. A nice example of side-boundary absorption for the diffraction
equation is shown in figure 3, which is a reproduction of a result of Clayton in SEP-10, p
24.
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FIG. 3. (Clayton) A comparison of zero-slope side conditions versus absorbing sides. In
this figure it is the diffraction equation, not the migration equation, which is used. The
first arriving energy is drifting rightward and being absorbed at the right boundary. No
energy enters at the left boundary. So we see a weakening diffraction on the left. On
the right the amplitudes appear unchanged because each trace is rescaled to unit
amplitude for display.
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Size of the Reflection Coefficient

Let us look at some of the details of the reflection coefficient calculation. A
mathematical expression for a unit amplitude monochromatic plane-wave incident on

the side boundary superposed with a reflected wave of magnitude ¢ is given by
P(:z:,z) = e—int-l-ik'z[eﬂ'k:: +ec e-ikzz] (3)

In equation (3) we understand « and k, to be arbitrary and k, to be determined
from o and k, by the dispersion relation of the interior region, i.e. a semi-circle
approximation. Assuming this interior solution to be applicable at the side boundary we
may insert (3) into the differential equation (2) which represents the side boundary.
Doing so we find 8,/8z converted to +ik; on the incident wave, 8,9z converted to
—1ik, on the reflected wave, and 8,78z converted to ik,. Thus the first term in (3) pro-
duces the dispersion relation D(w,ky k), times the amplitude P. The second term

produces the reflection coeflficient c times D(w,~kg ,k, ), times P.

_ =D(w.k, k)
T D(w.~kz k) (4)

The case of zero reflection arises when the numerical value of k, selected by the inte-
rior equation at (w,k,) happens also to satisfy exactly the dispersion relation D of
the side boundary condition. That explains why we try to match the quarter circle as
well as we can. You might suspect that the straight line dispersion relation
corresponds to the most general form of a side boundary condition, which is expressi-
ble on just two end points. Actually a more general expression with an extra adjustable

parameter b3 which fits even better is

vk,
[}

vk, vk,
R

D(w,k,,k,) = ll - ba

This choice was considered in more detail by Claerbout and Clayton in SEP-10. In fact

figure 3 was computed with this side condition.

Stability

Claerbout and Clayton established absolute stability of absorbing side boundaries
for the 15-degree equation including the discretization of the z-axis. Unfortunately
an air-tight analysis of stability seems to be outside the framework of the Muir
impedance rules. Consequently I don't believe the stability has been established for -
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the 45-degree equation. I'd like to speculate that a stability analysis may eventually fit
within the "causal branch cut"” analysis in SEP-20, but that is pure speculation. It has

worked in examples, but that doesn't prove it always will.



