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2.0 WHY USE FINITE DIFFERENCING?

In the previous chapter we learned how to extrapolate wave fields down into the
earth. The process proceeded rather simply being just a multiplication in the fre-
quency domain by exp[ik,(w.k;)z]. Finite-difference techniques will be seen to be
complicated. They will involve new approximations and new pitfalls. Why should we

trouble ourselves to learn them?

The situation is analogous to the one encountered in ordinary frequency filtering.
Frequency filtering can be done as a product in the frequency domain or a convolution
in the time domain. With wave extrapolation we have a product in both the temporal
frequency w-domain and the spatial frequency k,-domain. The new element is that now
we are in two-dimensional (w,k,)-space instead of the old one-dimensional w-space. Our
question, "Why bother with finite differences?" is a two-dimensional form of an old ques-
tion, "After the discovery of the fast Fourier transform, why should anyone bother with

time-domain filtering operations?"

Our question will be asked many times and under many circumstances. lLater we
will also have the axis of ofiset between the shot and geophone and the axis of mid-
points between them. Then again we will have a choice whether to work on these axes
with finite differences or to use Fourier transformation on them. Neither is it an all-
or-nothing proposition: for each axis separately we may make the choice of Fourier

transform or convolution (finite difference).

The answer to the guestion is many-sided, just as geophysical objectives are
many-sided. And most of the criteria for answering the question are already familiar
from ordinary filter theory. Those electrical engineers and old-time deconvolution
experts who have pushed themselves into wave processing have turned out to be

delighted by it. They hadn't realized their knowledge had so many applications!

Lateral Variation

In ordinary linear filter theory, a filter can be made time-variable. This is quite
useful in reflection seismology because the frequency content of echoes changes with

time. An annoying aspect of time-variable filters is that they cannot be described by a
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simple product in the frequency domain. So when an application of time-variable
filters comes along we either abandon the frequency domain or we go into all kinds of
contortions (stretching the time axis, for example) to try to make things appear time-

invariant.

All the same circumstances apply when we transfer attention from the time axis t
to the horizontal space axis z. Now the factor of major concern is the seismic velocity
v. If it is space-variable, say v(z), then the operation of upward and downward extra-
polating wave fields can no longer be expressed as a product in the k,-domain. So
when trying to extrapolate waves into the earth we abandon the spatial frequency
domain and go to finite differences, or else we go through all kinds of contortions (such

as stretching the z-axis) to try to make things appear to be space-invariant.

In two or more dimensions, stretching tends to become more difficult and less

satisfactory.

A less compelling circumstance of the same type which suggests finite difference
rather than Fourier methods is lateral variation in channel location. If geophones
somehow have become unevenly separated so that the Ar between channels is not
independent of z, then we have a choice of (1) resampling the data at uniform inter-

vals before Fourier analysis, or () processing the data directly with finite differences.

Causal All-Pass Filters

The upward and downward wave-field extrapolation filter explik, (w,k, )2 ] is basi-
cally a causal all-pass filter. {(Under some circumstances it is anticausal.) It moves
energy around without amplification or attenuation. I suppose this is why migration
filtering is more fun than minimum-phase filtering. Migration filters gather energy
from all over and drop it in a good place, whereas minimum-phase filters hardly move
things at all - they just scale some frequencies up and others down. Any filter of the
form exp[ip{w)] is an all-pass filter. What are the constraints on the function p{w)
which make the time-domain representation of exp(ig) causal? That is a question

more easily understood in the time domain.

Causal all-pass filters turn out to have an attractive representation, with Z-
transforms as ZV¥ A(1,/2),/4(Z). Those who are familiar with filter theory will realize
that the division by A(Z) raises a whole range of new issues: feedback, economy of
parameterization, and possible instability. These issues will all arise when we use finite
differences to downward extrapolate wave fields. It is a feedback process. The econ-

omy of parameterization is attractive. Taking A(Z)=1+ a,Z + axZ® the two
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adjustable coefficients are sufficient to select a frequency and a bandwidth for selec-
tive delay. Economy of parameterization also implies economy in application. That is
nice. It is also nice having causality as an automatic implication of the functional form.
On the other hand, the advantages of economy are offset by some dangers. Now we

must learn and use some stability theory. A(Z) must be minimum phase.

Being Too Clever in the Frequency Domain

In the frequency domain it is easy to specify sharp cutoff filters, say a perfectly
flat passband between 8 Hz and 80 Hz, zero outside. But such filters have problems in
the time domain. Such a filter is necessarily non-causal, giving a response before
energy enters the filter. Another ugly aspect is that the time response drops off only
inversely with t. What happens when we try to look at distant echoes which normally
have amplitudes weakened as inverse time squared? What happens is that they get lost

in the long filter response of the early echoes.

A more common problem arises with the 60 Hz powerline frequency rejection
filters found in much recording equipment. Notch filters are easy to construect in the
Z -transform domain. You start with a zero on the unit circle at exactly 60 Hz. That
kills the noise but it distorts the passband at other frequencies. So then a tiny dis-
tance away, outside the unit circle, you place a pole. The separation determines the
bandwidth for the noteh. The pole has the effect of nearly cancelling the zero if the
pair are seen from a distance. So you have an ideal flat spectrum away from the
absorption zone. You record some data with this. Late echoes are weaker than early
ones, so on your plotting machine you let the gain increase with time. After installing
your powerline reject filters you discover that they have increased the powerline noise
instead of decreasing it. Why? The reason is that you tried to be too clever when you
put the pole too close to the circle. The exponential gain effectively moved the unit
circle away from your zero towards the pole. You may have ended up with the pole on
the circle! Putting the pole further from the zero will give you a much broader notch,
less attractive in the frequency dorain, but at least the filter will work when the gain

varies with time.

So the frequency domain easily leads to pitfalls. Sharp cutoffs are not as atirac-
tive as they seem at first because they imply long and possibly unexpected time
responses. Don’t be too disappointed that this anomalous behavior usually fails to

occur with simple finite-difference representations. This can be an advantage.
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Zero Padding

When fast Fourier transforms came into use, one of the first applications was con-
volution. If a filter has more than about 50 coeflicients, then it may be faster to apply
it by multiplication in the frequency domain. The result will be identical to convolution
provided that care has been taken to pad the ends of the data and the filter with
enough zeroes. They make invisible the periodic behavior of the discrete Fourier
transform. For filtering time functions whose length is typically about one thousand,
this is a small price to pay in added memory compared to the time saved. Seismic sec-
tions are commonly thousands of channels long. For migration, zero padding must
simultaneously be done on the space axis and the time axis. This gets painful evenin a
large machine. To add further insult, there are three places where zeroes are

required, as indicated below:

data | O

To make matters worse, the filter of interest is basically an expanding spherical
wave. So instead of having an expanding circle we have concentric circles, the separa-
tion between them being controlled by the number of points on the frequency axis. So
when a circle "wraps around,” it has an amplitude diminished only by spherical spread-
ing. See figure 1. Energy density drops off on a sphere of size ¢ in proportion to L/t.
So amplitude drops as ¢=1/2, But that is for three dimensions and we almost always pro-
cess in two dimensions, in which case amplitude scales inversely as the 1/4 power of ¢.

That drops off slowly, so wraparound is something to worry about.

Looking Ahead

Some problems of the Fourier domain have just been summarized. The problems
of the space domain have yet to be seen. Seismic data processing is a multidimen-
sional task, and the different dimensions are often handled differently. But if you are
sure you are content with the Fourier domain then you could skip much of this chapter
and the next and jump directly to Chapter 4 to learn about shot-to-geophone offset,
stacking, and migration before stack. You could also start on multiple reflections in
Chapter 5, but you won't get far there with just Fourier transforms. Multiple
reflections are strongly influenced by lateral variation in reflectivity as well as by velo-

city. I suggest you proceed some distance into both Chapters 2 and 3 before jumping
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to Chapters 4 and 5.
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FIG. 1.. (Lynn) Inherent periodicily implied by the use of discrete Fourier transforms.
(a) The desired input, p(t.z), which here is 6(L~ty)é(z—z5)w(t). (b) The input
implied by the periodic boundary conditions of the DFT. The dots imply a continuation
ad infinitum. (c) The migraled section. The correct structure is shown by the heavy
line. (d) The origin of the spurious structures in (c). (Note: later versions of these
notes will show a clipped, synthetic example.)
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2.6 RETARDED COORDINATES

To examine running horses it may be best to jump on a horse. Likewise, to exam-
ine moving waves, it may be better to move along with them. So to describe waves
moving downward into the earth we might abandon (z.z) coordinates in favor of mov-

ing (z,z') coordinates where z'=z+t{v.

An alternative to the moving coordinate system is to define retarded coordinates
(z,z,t') where t'=t-z/v. The classical example of retarded coordinates is solar
time. Time seems to stand still on an airplane which moves westward at the speed of

the sun.

The migration process resembles simulation of wave propagation in either a mov-

ing coordinate frame or a retarded coordinate frame.

Retarded coordinates are much more popular in geophysics than moving coordi-
nates. The reason has to do with space variation in material velocity v{z,z). It is not
clear which velocity the frame should choose, or whether it should try to move at
different velocities in different places. Retarded time, on the other hand, is easily
defined with reference to traveltime along some particular family of rays. We will see
that a more mathematical reason for preferring retarded coordinates to moving coor-
dinates is to prevent the velocity from being a function of time as well as space.
Fourier transformation is a popular means of solving the wave equation, but it loses
much of its utility when the coefficients are non-constant. This fact alone can explain
why in solid earth geophysics, retarded coordinates are universally preferred to mov-

ing coordinates.

Definition of Independent Variables

The definition of retarded coordinates is one of convenience. Commonly the retar-
dation is based on hypothetical rays moving straight downward with velocity v(z).
The definition of these coordinates may have utility even in problems in which the
earth velocity varies laterally, say v({z,z), even though there may be no rays going
exactly straight down. In principle, any coordinate system may be used to describe

any circumstance. But the utility of the retarded coordinate system generally declines
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as the family of rays defining it departs more and more from the actual rays.

Despite the rather simple case at hand it is worthwhile to be somewhat formal and
precise. Define the retarded coordinate system (¢',z',2') in terms of ordinary Carte-

sian coordinates (¢,z,z) by the system of equations

t = t(tzz) =t~ [ 22 (1a)
4 ./O‘F(z) a

' = z'(t,x,2)

]
8

(1b)

I
N

z' = z'(t,x.2) (1c)
The purpose of the integral is to accumulate the traveltime from the surface to depth
z. The reasons why we bother to define (z',2') when it is just set equal to (z,z) are
first, to avoid confusion during partial differentiation and second, to prepare readers

for later work where there is a more general family of rays.

Definition of Dependent Variables

There are two kinds of dependent variables, those which characterize the medium
and those which characterize the waves. We characterize the medium by its velocity v
and its reflectivity c¢. To characterize the waves we use U for upcoming wave, D for
downgoing wave, P for pressure, and § for a modulated form of pressure. Let us say
P(t,r,z) is the mathematical function to find pressure given {¢,z,z), and P'(t',2',2')
is the mathematical function given (¢',z',z'). The statement that the two mathematical

functions P and P' both refer to the same physical variable is this

P(t,z,z)

Pt (t,z,z)z'(t,z,2),2'(t,z,2)] (?)
P(t,z,z) = P'(t'.x'.z")

Obviously we also have analogous expressions for the other dependent variables. One
advantage of solid-earth geophysics over other branches of geophysics is that the
specifications of the medium, i.e. v and ¢, are not dependent on time. Now we can
state this more precisely, that the advantage of retarded coordinates compared to

moving coordinates is that »' and ¢' do not depend on #'.
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The Chain Rule and the High Frequency Limit

The familiar partial differential equations of physics come to us in (¢{,z,2)-space.
To use them in (¢',z',2' )-space we need to learn to convert the partial derivatives. This
is done with the chain rule for partial differentiation. For example, differentiating (2)

with respect to z we get

oFP _ aP' at’ + oF' oz’ + oP' dz'

8z ot 0z oz’ 08z 8z 0z (38)
Using (1) to evaluate the coordinate derivatives we get
oP 1 ap aP'
——— T o e e + —_—
0z — ot' dz' (3b)
v
There is nothing special about the variable P in (3). We could as well write
8 1 9 a
—_— e e S e
oz T at’ dz' (4)

where the left side is for operation on functions which depend on (¢,z,z) and the right

side is for functions of (¢',z',2'). Differentiating twice we get

92 [-1 @ a |[-1 @ 3
= - + - -+ ; (5)
928~ (g 8t 8z'| (g o' oz
Using the fact that the velocity is always time-independent we get
@ 1 8 2 @ # [a 1]a
2 = at?  —, 0tz | pz® |8z .| at’ (6)
dz (7)2 t 7L z o

Except for the rightmost term with the square brackets it could be said that "squaring"
the operator (4) gives the second derivative. This last term is almost always neglected
in data processing. The reason is that its effect is very similar to that of other first
derivative terms with material gradients for coefficients. The effect of such terms,
described along with the derivation of the single square root equation, is to cause
amplitudes to be more carefully computed. If this term is to be included, then it would

seem that all such terms should be included, from the beginning.
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Fourier Transforms in Retarded Coordinates

Given a pressure field P({,xr,z) we may Fourier transform it with respect to any
or all of its independent variables (¢,zr,z). Likewise if the pressure field is specified in
retarded coordinates we may Fourier transform with respect to (¢',2',2'). As we con-
ventionally refer to the Fourier dual of (¢.z,z) as (w.kz.k;) it seems appropriate to
refer to the dual of (¢,z'.2') as (w'.k.".k.'). Now the question is, "How are (w'.k;"k;")
related to the familiar {(w,k;.k;)?" The answer is contained in the chain rule for partial

differentiation. Any expression like (4)

i} 1 8 i)
i =4 . Ammm— Saro—— + et
dz T at'’ az' (4)

upon Fourier transformation says

ey = — —22 4 ik, (7)

v

Computing all the other derivatives, we have the transformation

0w = o (8a)

kz = k' (8b)

k, = k' + = (8c)
v

Recall the dispersion relation for the scalar wave equation

2
= = kf+ k& (9)
v

Performing the substitutions from (8) into (9) we have the expression of the scalar

wave equation in retarded time, namely

2 2

k' + 2

v

L= )2 (10)

These two dispersion relations are plotted in figure 1 for the retardation velocity

chosen equal to the medium velocity.

Figure 1 graphically illustrates that retardation can reduce the cost of finite-
difference calculations. Consider waves going nearly straight down. On the dispersion
curves they are near the top of the circle. The effect of retardation is to shift the
circle’s top down to the origin. Now consider discretizing the z- and =z-axes. This

means that there will be a spatial folding frequency on both k.- and k,-axes. The
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FIG. 1. Dispersion relation of the wave equation in usual coordinates (left) and
retarded time coordinates (right).

larger the frequency o, the larger the circle. Clearly the top of the shifted circle is
"further from folding. Alternately, Az may be increased (for the sake of economy)

before k,.Az exceeds the Nyquist frequency.

Interpretation of the Modulated Pressure Variable Q

Earlier we defined a variable @ from the pressure P by the equation

* dz
icaf
° T(z)

The right side is a product of two functions of ‘w. At constant velocity (11) is

P = @ exp (11)

expressed as
P(w) = Qw)e' ™ = Q(w)e'™ (12)

In the time domain e “* becomes a delta function 6(t — t,). Thus in the time domain
(12) is
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p(t) = q(t)* 6(t — 2,/v)
= q(t - z/)
= g(t")

This confirms that the definition of a dependent variable § is equivalent to introduc-

ing retarded time ¢'.
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2.7 FINITE DIFFERENCING IN (t.x,z)-SPACE

At the present time much, if not most, production migration work is done in
(t,z,z)-space. However, in principle, there seems to be no reason why this work should
not be done in (w,z,z)-space, much as described earlier. It certainly is more confus-
ing to downward continue in the three-dimensional (¢,z,z)-space than in the two-
dimensional (z,z)-space. The frequency w enters as a third dimension only when we
sum over it to image at {=0. Further disadvantages of t-space are the need to learn
some stability analysis and the need to consider accuracy as a function of size of At.
In the next chapter the stability question is completely resolved and the cost of At

accuracy is determined.

Since the earth is time-invariant we might be inclined to suspect that we can
always Fourier transform the time axis and that there is really no need to learn any
time-domain techniques. This belief might be justified for migration of primary
reflections on stacked sections. It might be true that the w-domain is more advanta-
geous than the {-domain, and the {-domain is a "historical relic.”" So the casual reader
may safely skip this section. [Ironically, I did all my early work in (w,z,z)-space, but I

recall no one who saw it as practical until I learned to migrate in (¢,z,z )-spacet]

The serious reader should not so hastily abandon the time domain. Looking for-
ward to pre-stack partial migration, the Yilmaz approach must be implemented in the
time domain. Looking further forward to the section, "Slanted-Ray, Multiple
Reflections,” we see the first of several processes for suppression of multiple
reflections which seem to demand the time domain. Predictive multiple suppression
seems to be a non-linear process, a fact which works against frequency space. Recall
also that even the simple, time-honored process of time-variable filtering is ill-suited to
the frequency domain. It is only prudent to keep an open mind on the question of time

domain versus frequency domain.

There are three different planes which slice through (¢,z,z)-space, and it is worth
having a look at each of them before we enter the full volume. First, we have already
looked in considerable detail at wave extrapolation in (z,z)-space for fixed w. Next we
will look at migration in (z,t)-space for fixed k,. Besides another look at the migra-

tion process, this also offers some insights into velocity determination, insights we
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didn't get in w-space. The third slice we will look at is (¢,z)-space. There we will
solve a dip-filtering problem as a simple prototype of migration. Dip filtering is a pro-
cess of long standing interest in geophysics. It is particularly attractive to dip filter in
(t.z)-space rather than the usual (w,k,)-space because it is frequently important to

change the filter parameters with time and space.

Migration in (zt)-Space !

The equation for upcoming waves U/ in retarded coordinates (¢',z',z') is

92U v 9%U
dz'ot' = 2 gz® (1)

To Fourier transform the z-axis we only need assume that v is a constant function of

z and that the z-dependence of U is the sinusoidal function ezp (ik,z). Thus

vk2 g°
2 oz'at’

U (2)

Letting * denote convolution in (z,t)-space, this partial differential equation may be

written as

11
11

1

T Az'At

0={£’3§__1_
2 4

2y (@

where we have taken t' downward and 2' to the right. The 1/4 arises from the aver-
age of UV over four places on the mesh. Since the coeflicients are positive, the sum of

the two operators always has |b| 2 |s| in the form

s b
b s

U (4)

Next we consider the task of using the operator of (4) to fill in a table of values for U

1 Adapted from SEP-1, p. 73-77.
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t" (5)

From equation (4) we see that given the appropriate three values of U a fourth

may be determined by either of the two operations

1 or T (6a,b)

It turns out that because |b| 2 |s| the filling operations implied by

= or T (")

are unstable. It is obvious that there would be a zero-divide problem if s=0, and it is
not difficult to do the stability analysis to show that (7) causes exponential growth of

small disturbances.

Migration and data synthesis may be envisioned in the (z'.t')-space on the follow-

ing table contains the upcoming wave U

v
3]

Uy €y

Uz Cg
s ca (8)

Uy 'bﬂ
o'ojojolo
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In this table the observed upcoming wave at the earth’'s surface z' = 0 is denoted by
u;. The migrated section is, denoted by c¢;, is depicted along the diagonal. The.
migrated section is shown on a diagonal since the imaging condition of exploding

reflectors at time £=0 is represented in retarded space as

z' = z (9a)
t' = t+z, v (+ for up) (9b)
0=t =t-2' v (10)

Actually the best focused migration need not fall on the 45-degree line as depicted
in (8) but it might be on any line or curve as determined by the earth velocity. Indeed,
the concept forms the basis for velocity determination in a later chapter. This concept

is not so apparent in frequency-domain migration.

It is a worthwhile exercise to make the zero-dip assumption (k, = 0) and use the
numerical values in the operator of (4) to fill in the elements of the table (8). It will be
found that the values of u; move laterally across the table with no change, predicting
as it should, that c¢; = u;. Slow change in z suggests that we have oversampled the
z-axis. In practice, effort is saved by sampling the z-axis with fewer points than the

t -axis.

(¢.z)-Space, Recursive Dip Filters ?

The motivation for this work is to provide simple, causal, recursive dip filters
which can be easily applied and made time- and space-variable. Such filters may make
possible the observation of important weak events that are obscured by strong events.
For example, weak fault diffiractions carry velocity information, but they may often be
invisible because of the dominating presence of flat layers. For data recorded at late
times at only modest offsets, such diffractions could be the only way to measure velo-

city. This situation applies, for instance, to deep continental soundings.

So-called "pie-slice" filters offer considerable control over the filter response in
k /w dip space. While recursive filters are not controlled as readily, they do meet the
same general needs as pie-slice filters and offer the advantages of (1) causality, (2)

time- and space-variability, and (3) simple and economic recursive implementation.

2 Adapted from SEP 20, p. 235.
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Let P denote raw data and § denote filtered data. When seismic data is quasi-

monochromatie, dip filtering can be achieved with spatial frequency filters.

Dip Filters for Monochromatic {(w ~ Const ) Data

Low Pass High Pass
b ic®
=—2 =—r _p
“= ik =35

To apply these filters in the space domain it is necessary only to interpret k2 asa
tridiagonal matrix, call it T, with (-1, 2, -1) on the main diagonal. Specifically, for the

low pass filter it is necessary to solve a tridiagonal set of simultaneous equations like
(I1+T)q = bp (11)

in which q and p are column vectors whose elements denote different places on the
z-axis. We did this while solving the heat flow equation. To make the filter space vari-
able, the parameter b can be taken to depend on z so that bl becomes a general
diagonal matrix. It doesn't matter whether p and q are represented in the o

domain or the { domain!

Turning attention from narrow-band data to data with a broader spectrum, we

have
Dip Filters for Moderate Bandwidth (Aw) Data
Low Pass High Pass
k2
b —
Q=—""75"P Q=—"5F P
b+ — b + —
-iw -iw

Naturally these filters can be applied to data of any bandwidth. However the filters are

appropriately termed "dip filters" only over a modest bandwidth.

To understand these filters we need to look in the (w,k)-plane and draw contours
of constant k%, i.e. w = ak? Such contours, examples of which are shown in figure
1, are curves of constant attenuation and constant phase shift. Inspecting the low pass
filter, we see that there is no phase shift in the flat pass zone, but that there is time
differentiation in the attenution zone. Inspecting the high-pass filter we see that there

is no phase shift in the flat pass zone but that there is time integration in the
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attenuating zone.
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FIG. 1. (Hale) Constant attenuation contours of dip filters. Over the seismic frequency
band these parabolas may be satisfactory approximations to the dashed straight line.

Implementation of the moderate bandwidth dip filters is again a straight forward
matter. The only trick is to realize that the differentiation implied by —iw is per-

formed in a Crank-Nicolson sense. For example, the high pass filter becomes
"

(-iwbl+T)Q = TP
Izb? [qt+1'—'qt] + %T[qtu + (Iz] = %‘T[Pt+1 + Pz]

b 1
Af I+ 2T

b 1 1
Q+1 = fuf I- ET q + ET[Ptn + Pt]

The last equation is a tri-diagonal system of simultaneous equations for gq;,3. As before

q; is a vector function of = . The equation may be solved recursively for successive
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t wvalues

Within reasonable bounds the parameter & which determines the filter cutoff
can be chosen to be any function of time and space. A later chapter on stability
analysis shows that the recursion is stable. People with a special interest in time
series analysis may choose to approach problems of this type by letting the time
dependence be represented by Z-transforms. Then differentiation and integration are
represented with the bilinear transform (1-2),/(1+Z2).

Another interesting feature of these dip filters is that the low pass and the high
pass filters constitute a pair of filters which sum to unity. So nothing is lost if a data
set is partitioned into two parts by means of them. The high passed part could be

added to the low passed part to recover the original data set.

(t.xz,z)-Space

I find that the easiest way to do 15-degree (¢.z,z )-space migration is to refer back

to the (z.t) space migration but replace k? by the tridiagonal matrix T.

The 45 degree migration is a little harder because the operator in the time domain
is higher order. When I did this kind of work I found it easiest to use the Z-transform
approach where 1/(-iwAt) is represented by the bilinear transform (1+Z)/(1-Z).
There are various approaches to keeping the algebra bearable. One approach is to
bring all powers of Z to the numerator and then collect powers of Z. Another
approach, called the integrated approach, is to keep 1,/(1~Z) with some of the terms.
Such terms are represented in the computer by buffers which contain the sum from

infinite time to time ¢.



