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1.1 EXPLODING REFLECTORS

The most basic reflection seismic prospecting equipment is a source for impulsive
sound waves, a geophone (something like a microphone), and a multichannel waveform
display system. A survey line is defined along the earth’s surface. It could be the path
for a ship, in which case the receiver is called a hydrophone. About every 25 meters or
so the source is activated and the echoes are recorded nearby. The sound receiver will
have almost no directional tuning capability, owing to the fact that the frequencies
which have deep-earth penetrating ability are those with wavelengths longer than the
ship. Consequently, echoes can arrive from several directions at the same time. It is
the joint task of geophysicists and geologists to interpret the results. Geophysicists
assume the quantitative, physical and statistical tasks. Their main goals, and the goal
to which this book is mainly directed, is to make good pictures of the earth’s interior

from the echoes.

A Powerful Analogy

Figure 1 depicts two wave-propagation situations which are apparently quite
different. The first is our situation with field recording. The second is a thought exper-
iment in which all of the reflectors in the earth suddenly explode. Waves from the
hypothetical explosion pPropagate up to the earth's surface where they are observed by
a hypothetical string of geophones along the earth’'s surface. Even if the earth had
exploding reflectors, we would have difficulty recording the waves because of the need
for so many geophones. It is surely much easier to tow one geophone past a thousand

locations than to operate a one-thousand-channel recording system.

Notice in the figure that the raypaths in the field recording situation seem to be
the same as those in the exploding reflector situation. It is a great conceptual advan-
tage to imagine that the two wave fields, the observed and the hypothetical, are indeed
the same. If they are the same, then we can ignore the many thousands of experi-
ments which have actually been done and think only of the one hypothetical experi-
ment. The one major, obvious difference between the two situations is that in the field
geometry waves must first go down and then return upward along the same path,

whereas in the hypothetical experiment they just go up. This difference could be
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Zero—~offset Section Exploding Reflectors

FIG. 1. The field geometry of echoes collected with a source-receiver pair at all places
on the earth’s surface (left) and the "exploding reflectors” conceptual model (right).

accounted for in either of two ways. We could take the traveltime in field experiments
and divide by two. In practice, the data of the field experiments (two-way time) is

analyzed assuming the sound velocity to be half its true value.

Huygens Secondary Point Source

Waves on the ocean have wavelengths comparable to those of waves in seismic
prospecting (15-500 meters), but they are conveniently different in that they move
slowly enough to be easily observed. Imagine a long harbor barrier parallel to the
beach with a small entrance in the barrier for the passage of ships. This is depicted in
figure 2. A plane wave incident on the barrier from the open ocean will send a wave
through the gap in the barrier. It is an observed fact that in the harbor the wavefront
becomes a circle with the gap as its center. The difference between this beam of water

waves and a light beam through a window is in the ratio of wavelength to hole size.

A Cartesian coordinate system has been superimposed upon the ocean surface
with z going along the beach and 2 measuring the distance from shore. To draw the
analogy to reflection seismology we must say that we are confined to the beach (the
earth's surface) where we can make only measurements of wave height as a function of
z and {. From this data we can make inferences about the existence of a gap in the
barrier out in the (z,z)-plane. Figure 3a depicts the arrival time at the beach of a
wave from the ocean. The earliest arrivals occur nearest the gap. What mathematical

expression determines the shape of the arrival curve seen in the (z,t)-plane?
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FIG. 2. Waves going through a gap in a barrier have semi-circular wavefronts (provided
that the wavelength is long compared to the gap size).
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FIG. 3. The left frame shows the hyperbolic wave arrival time seen at the beach.
Frames to the right show arrivals at increasing distances out in the water. (The z-axis
is compressed from figure 2.)
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The waves of interest are expanding circles. An equation for a circle expanding

with velocity v about a point (z3,23) is
(z-z5)® + (2-za)® = V%2 (1)

Considering t to be a constant, i.e. taking a snapshot, (1) is the equation of a circle.
Considering z to be a constant, (1) is an equation in the (z .t )-plane for a hyperbola.
Considered in the (¢,z,z)-volume, (1) is the equation of a cone. Slices at various
values of t show circles of various sizes. Slices of various values of z show various
hyperbolas. Figure 3 shows four hyperbolas. The first is our observation on the beach
29 = 0. The second is a hypothetical set of observations at some distance zy out in the
water. The third, at z,, is an even greater distance from the beach. The fourth, zg, is
nearly all the way out to the barrier where the hyperbola has degenerated to a point.
All these hyperbolas are from a family of hyperbolas, each with the same asymptote.
The asymptote refers to a wave which turns nearly 80 degrees at the gap and is found
moving nearly parallel to the shore at the speed dz/dt of a water wave. [For this
water wave analogy we presume (incorrectly) that the speed of water waves is a con-

stant independent of water depth.]

Linearity is a property of all low-amplitude waves (not those foamy, breaking
waves you see near the shore). This means that if we have two gaps in the harbor bar-
rier we will have two semi-circular wavefronts. Where the circles cross, the wave
heights combine by simple linear addition. It is interesting to think of a barrier with
very many holes such as that shown in figure 4. The many semi-circles and hyperbolas
combine, tending to give the wave which would have been seen if there were no barrier.
Indeed, in the limiting case where the barrier disappears, being nothing but one gap
alongside another, the semi-circles and the hyperbolas should all combine to make
only the incident plane wave. All those waves at non-vertical angles must somehow
combine with one another to extinguish all evidence of anything but the plane wave. If
the original incident wave was a positive pulse, then the Huygens secondary source
must consist of both positive and negative polarities in order to enable the destructive
interference of all but the plane wave. So the Huygens waveform has a phase shift.
Eventually we will find mathematical expressions for the Huygens secondary source.
Another property we will discover, well known to boaters, is that the Huygens semi-
circle has its largest amplitude pointing straight towards shore. The amplitude drops to
zero for waves moving parallel to the beach. In optics this amplitude dropoff with angle

is called the obliquity factor.
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FIG. 4. (Gonzalez) Top shows a superposition of many Huygens semi-circular wave-

fronts to create a nearly planar wave. Bottom shows the superposition of the hyper-
boloids.
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Migration Defined

Looking in the dictionary at the word "run" you find many definitions. They are
related, but they are distinct. The word "migration" in geophysicai prospecting like-
wise has about four related but distinctive meanings. The simplest is like the meaning
of the word "move.” When an object at some location in the (z,2 )-plane is found at a
different location at a later time t, then we say it moves. Analogously when a wave
arrival (often called "an event”) at some location in the (z,t)-space of geophysical
observations is found at a different position for a different survey line at a greater

depth =z, then we say it migrates.

To see this more clearly we imagine the four frames of figure 3 being taken from a
movie. During the movie, the depth 2z changes beginning from the beach (earth’s
surface) going out to the storm barrier. The frames are superimposed in figure 5a.
Mainly what happens in the movie is that the event migrates upward toward ¢=0. To
remove this dominating eflect of vertical translation we make another superimposition,
keeping the hyperbola tops all in the same place. This is done by replacing the time
t-axis by a so-called retarded time axis t'=t+z /v, as shown in figure 5b. Our second,
more precise, definition of migration is the motion of an event in (z,t')-space as 2z

changes. Having removed the vertical shift, we are seeing mainly a shape change.

It is of interest to see how the shape actually changes. Think of a pebble thrown
into the water and the ensuing circular wave. At the end of any ray from the center to
the circle is a wavefront whose slope is given by some dz /dz = tan 9. This angle is
constant as the circle grows with ¢. Likewise, in (z.t)-space, the wavefront, called an
event, has a slope dt_/dz = sin ¥/v which remains constant as z increases. Figure
ob was drawn so that the hyperbolas end at ¥ = 45 degrees. These endpoints migrate
along a straight line in the (z.t ')-plane toward the center, which they hit at depth zs.

In this case the exploding reflector is like a short line segment across the barrier
gap. At depth zg all the energy in the (z.t')-space of migrated data is located in the
position of the gap. In other words, it is focused. The third definition of migration is
that it is the process which somehow pushes observational data -- wave height as a

functionof z and ¢ — from the beach to the barrier.

To go farther we need a more general example than the storm barrier example.
The barrier example is confined to making Huygens sources only at some particular
z, and we need sources at other depths as well. Then, given a wave extrapolation pro-
cess to move data to increasing =z values, we can construct our exploding reflector

images with



197

\ 4N

t t'=t+z/v

FIG. 5. (Gonzalez) Left shows a superposition of the hyperbolas of figure 3. At the right
the superposition incorporates a shift, called retardation t'=t+z /v, to keep the
hyperbola tops together.

Image (x.z) = Wave (t=0,z.z) (R)

Our fourth definition of migration also incorporates the definition of "diffraction” as the

opposite of migration.

observations model
migration
z=0 —_— t=0
all ¢ e all z
diffraction

Diffraction is sometimes regarded as the natural process which creates and enlarges

hyperboloids. Migration is the computer process which does the reverse.

Another aspect of the use of the word "migration” arises in Chapter 4 where the
horizontal coordinate can be either midpoint ¥ or shot to geophone offset h. Hyper-

boloids can be downward continued in both the (y.t) and the (k.t) plane. In the
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(v.t) plane this is called migration or imaging and in the (h.t) plane it is calleg

Jocussing or velocity analysis

An Impulse in the Data

We have seen that Huygens diffraction takes an isolated pulse function (delta func-
tion) in (z,z)-space and makes it into a hyperbola in (z,t)-space at z=0. The converse

is to start from a delta function in (z,t)-space at 2=0. This converse refers to a

at the anomalous recording position.

/{ \Y) Sa 353

~

FIG. 8. When the seismic source S is at the exact center of a semi-circular mirror,
then, and only then, will an echo return to the geophone at the source. This semi-
circular reflector is the logical consequence of a dataset where one echo is found at
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FIG. 7. Top shows the circular mirrors in (z,z)-space for a 80-degree dipping line of
point sources. Bottom shows the hyperboloidal wavefronts seen at the earth’s surface.
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Migration Steepens Reflectors
It is true that flanks of hyperbolas migrate without change of slope. But a hyper-

bola is a special kind of event which comes from a single source at a single depth.
Superposing point sources from different depths into a dipping planar reflector we find
that migration steepens the reflections. This could be suspected by consideration of
the limiting case, a vertical wall. Its reflections, the asymptotes of a hyperbola, have a
non-vertical steepness. To see this in a less extreme case, see figure 7, where a dipping

bed, of dip of about 80 degrees, is made from a series of points in a line.

Limitations of the Exploding Reflector Concept

The exploding reflector concept is a most powerful and fortunate analogy. For
people who spend their time working entirely on data interpretation rather than pro-
cessing, the exploding reflector concept is more than a vital cruteh. It’s the only
means of transportation! For those of us who work on data processing, the exploding
reflector concept has a very serious shortcoming. No one has yet figured out how to
extend the concept to apply to data recorded at nonzero offset. Furthermore, most
data is recorded at rather large offsets. In a modern marine prospecting survey, the
recording cable (a cable containing not one but many hundreds of hydrophones) is typ-
ically 2-3 kilometers long. Drilling may be about 3 kilometers deep. So in practice the
angles are big. Therein lie both new problems and new opportunities, none of which we

will consider until Chapter 4.

shows a ray which is not predicted by the exploding-reflector model, but which will be
present in a zero-offset section. Notice that lateral velocity variation is required for

this situation to exist,

Second, consider the situation with multiple reflections. For a flat seafloor with a
two-way traveitime ¢1. multiple reflections are predicted at times 2ty 3ty, 44, etc. In
the exploding-reflector geometry the first multiple has first a path from reflector to
surface, then from surface to reflector, then from reflector to surface, for a total time
3¢y. Subsequent multiples occur at times 5ty. 7t,. ete. Clearly there is no relationship
between the multiple reflections generated on the zero-offset section and those of the
exploding-reflector model. This explains why Chapter 5 of this book, which has to do
with modeling and suppressing multiple reflections, completely abandons the zero-
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velocity lens

reflector

FIG. 8. A ray, not predicted by the explodin
be found on a zero-offset section.

offset approach.

g reflector model, which would nevertheless
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1.2 WAVE EXTRAPOLATION AS A 2-D FILTER

In Fourier analysis we are familiar with the idea that an impulse function (delta
function) can be constructed by superposition of sinusoids {or complex exponentials).
In the study of time series this construction is used for the imnpulse response of a filter.

In the study of functions of space, it is used to make a physical point source.

Taking time and space together, Fourier components can be interpreted as mono-
chromatic waves. Physical optics (and with it reflection seismology) becomes an exten-
sion to filter theory. In this section we learn the mathematical form, in Fourier space,
of the Huygen's secondary source. It is a two-dimensional (2-D) filter for spatial extra-

polation of wave fields.

Rays and Fronts

Figure 1 depicts a ray moving down into the earth at an angle ¥ from the vertical.
Perpendicular to the ray is a wavefront. By elementary geometry the angle between
the wavefront and the earth’s surface is also . The ray increases its length at a speed
v. The speed which is observable on the earth's surface is the intercept of the wave-
front with the earth’s surface. This speed, namely v /sin®, is faster than wv. Like-
wise, the speed of the intercept of the wavefront and the vertical axis is v /cos¥. A
mathematical expression for a straight line, like that shown to be the wavefront in

figure lis
z = zp—z tan ¥ (1)

In this expression z, is the intercept between the wavefront and the vertical axis. To

make the intercept move downward, we replace it by the appropriate velocity times

time

S
= Tosg "% tan ¢ (2)

Solving for time we get

t(z,z) = %cosﬂ+—3sin1¥ (3)
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FIG. 1. Downgoing ray and wavefront.

Equation (3) tells us what time the wavefront will pass any particular location (z.z).
The expression for an arbitrary shifted waveform is f (¢ — ¢y). Using (3) to define the
time shift ¢g we have an expression for a wave field which is some waveform moving on

a ray.

moving wave field = flt ~ —;‘i— sin ¥ — —3— cos ¥ (4)

Waves in Fourier Space

Arbitrary functions can be made from the superposition of sinusoids. Sinusocids
and complex exponentials commonly occur. One reason they occur is because they are
the solutions to linear partial differential equations (PDE’s) with constant coeflicients.

The PDE’s arise because most laws of physics are expressible as PDY's.

Specializing the moving wave field in equation (4) to be a cosine function of fre-
quency o, and using the fact that cosine is even, i.e. cos ¥ = cos -, we have
cosine on @ ray = COS

ol sin® + < cos® — ¢
v v

e

Using Fourier integrals on time functions we encounter the Fourier kernel exp(-iwt).

To use Fourier integrals on the space-axis 2z we need to define the spatial angu‘lar
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frequency. Since we will ultimately encounter quite a few different space axes (three
for shot, three for geophone, also the midpoint and offset), we will adopt the convention
of using a subscript on the letter k to denote the axis being Fourier transformed. So
kr is the angular spatial frequency on the z-axis and exp(ik.z) is its Fourier ker-
nel. For each axis and Fourier kernel there is the question of the choice of the sign of
i. The sign choice is discussed later in more detail, but essentially we will choose the
sign convention of most physics books, namely, to agree with equation (5), which is a
wave moving in the positive direction along the space axes. Thus the Fourier kernel for

(¢.x,z)-space will be taken to be
Fourier kernel = expli(k,z + ky2z — wt)] (8)

Now for the whistles, bells, and trumpets. Comparing (5) and (8) we learn how to
relate physical angles to velocity and Fourier components. These relations should be

memorized!

Angles and Fourier Components

vk vk
= cos ¥ = —=
@ @

sin® =

(7

Equally important is what comes next. We may insert the angle definitions into the
familiar relation sin®3 + cos®9 = 1. This gives a most important relationship, known by

the impressive name as the dispersion relation of the scalar wave equation.

2
k2 + k2 = 2 (8)
v

We'll encounter dispersion relations and the scalar wave equation later. The reason
why (8) is so important is that enables us to make the distinction between an arbitrary
function and an apparently chaotic function which actually is a wave field. Take any
function p(¢,z,z). Fourier transform it to P(w,k;,k,;). Look in the {(w,k,,k,)-volume
for any non-vanishing values of P. You will have a wave field if and only if all non-
vanishing P have coordinates which satisfy (8). Even better, in practice we often
know the (z,t) dependence at 2z=0, but we do not know the z-dependence. Then
we find the z-dependence by the assumption that we have a wavefield, so the z-

dependence is implied from (8).
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Two-Dimensional Fourier Transform

Before going any further, let us review some basic facts about two-dimensional
Fourier transformation. A two-dimensional function is represented in a computer as
numerical values in a matrix. A one-dimensional Fourier transform in a computer is an
operation on a vector. A two-dimensional Fourier transform may be accomplished by a
sequence of one-dimensional Fourier transforms. You may first transform each
column vector of the matrix and then transform each row vector of the matrix. Alter-

nately you may first do the rows and later do the columns.

We can diagram the calculation as follows:

p(t.x) =—=——- P({w.z)

P(tk,) ==——- P(w.k,)

A notational problem on the diagram is that we cannot maintain the usual convention
of using a lower case letter for the domain of physical space and an upper case letter
for the Fourier domain, because the convention cannot include the mixed objects
P(t.,k,) and P{(w,z). Rather than invent some new notation it seems best to let the
reader use the context to cope with this notational problem. The arguments of the

function must help serve as the name of the function.

Altogether, the two-dimensional Fourier transform of a collection of seismograms
involves only twice as much arithmetic as the one-dimensional Fourier transform of
each seismogram. This is lucky. Let us write a few equations to establish that the
asserted procedure does indeed do a two-dimensional Fourier transform. First of all
we express the idea that any function of z and ¢t may be expressed as a superposi-

tion of sinusocidal functions

pt.x) = [ [ % plak,) do dk, (9)

The kernel in this inverse Fourier transform takes the form of a wave moving in the
plus z-direction. Likewise, in the forward Fourier transform, the sign of both
exponentials changes, preserving the fact that the kernel is a wave moving positively.
The scale factor and the infinite limits are omitted as a matter of convenience. (The
limits and scale both differ from the discrete computation, so why bother?) With (9) we
are doing the inverse transform. Now let us nest the double integration in a form which

indicates that the temporal transforms are done first (inside):
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plt.x) = feik‘z [f g-iot P(w.lcz);iw]dkz = feik"z P(t k) di.

The quantity in brackets indicates temporal Fourier transforms being done for each
and every k,. Alternately, we could do the nesting with the k,-integral on the inside.
That would imply rows first instead of columns (or vice versa). It is the separability of
exp(—iwt + ikyz) into a product of exponentials which makes the computation this

easy and cheap.

The Input-Output Relation

Let us return to the dispersion relation (8)

kf+ kR = =5

v
In applications where time evolves it is convenient to solve (8) for w(k,,k,). In extrapo-
lation applications it is convenient to solve for k,{w,k;). Consider first an evolution

situation. Inspect the integral below.

plz,z,t) = ff[P(kx,kz,t=0)e—m(k"k’)t e%a®t %2 p  dk, (10)

At ¢=0 it is just a double inverse Fourier transform which represents initial condi-
tions in the (z,z)-plane. Taking FP(k, k,,0) to be constant would be a point source at
(z,z) = (0,0). The time-dependence in (10) has been chosen [by selecting w(k,,k;)]

to ensure that p(z,z,t) is a wave field which fits the initial conditions at ¢=0.

Next consider the wave-extrapolation situation implied below:

p(z,z,t) = ff[P(kz,z=0,w) galokz)z| miutikye dk, (11)

At 2z=0 it is just a double inverse Fourier transform which could represent geophysi-
cal observations in the (¢,z)-plane at the earth’s surface. The depth-dependence has
been chosen [by selecting k.{(w.k;)] to ensure that p(z.z.t) is a wave field that

matches the surface observations at z=0.

So far we have not mentioned that w(k,,k,) and k,{w,k,) are square-root func-
tions and consequently that there is a choice of signs. Initial conditions will determine

what combination of the two solutions are desired. In the extrapolation case we have

1/2
i’.a__ — k2

£
,U2

k, = % (12&)
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vk 2 2

1- 2

1

(12b)

2]
+ =
v [A]

+ —:'Ji cos ¥ (12¢)

Choice of the plus means that exp(—iwt + ik,z) is a downgoing wave. The minus sign

makes it upcoming (the usual case).

The quantity in brackets in (11) may be evaluated at any value of z. Given its

value at one value of =z, say z=0, we can determine its value at another. That is,

ik, (w.key )2

Pw,kz,z) = P{wk,,0)e (13)

This is a product relationship in both the w-domain and the k;-domain. Hence it can
be regarded as a convolutional filter in ¢ and z. In terms of engineering flow

diagrams with inputs and outputs, equation (13) may be thought of as

filter
input ~ output
>~ e\'k,(w,lcz)z —_— s
P(w,k,,0) Plok,,z)

What does this filter look like in the time and space domain? Physically, it is the
Huygen's secondary wave source which was described in terms of ocean waves entering
a gap through a storm barrier. Adding up the response of multiple gaps in the barrier
would be convolution over z. Superposing many incident ocean waves would be convo-
lution over ¢. Mathematically, the exact inverse 2-D transform of the filter is a
difficult task, well beyond the level of our present efforts. As a practical matter the 2-D
transforms are rather easy in a computer. Some slices of the conic section are found
in FGDP on pages 199-200.

Exercise

1. Let P(k;.k,) in (10) be a constant signifying a point source at the origin in
(z,z)-space. Let t be very large, meaning that the phase =
¢ = [—w(kz.ky) + &z (z/t) + kp (z/t)]t in the integration is rapidly alternating
with changes in k, and k,. Assume the maximum contribution to the integral
comes when the phase is stationary. That is, where 8¢, /8k, and 8¢ /8k, both

vanish. Where is the energy in (z,z,t)-space?
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1.3 FOUR WIDE-ANGLE MIGRATION METHODS

The four methods of migration of reflection seismic data that are described here
may all be found in modern production environments. As a group they are all strong in
their ability to handle wide-angle rays. As a group they are all weak in their ability to

deal with lateral velocity variation.

Traveltime Depth

Conceptually, the output of a migration program is a picture in the (z.z)-plane.
In practice the vertical axis is almost never depth z: it is the vertical traveltime 7. In
a constant-velocity earth the time and the depth are related by a simple scale factor.
The meaning of the scale factor is that the (z.7)-plane has a vertical exaggeration
compared to the (z.,z)-plane. In reconnaissance work, the vertical is often exag-
gerated by about a factor of five. By the time prospects have been narrowed to the
point where a drill site is being selected, the vertical exaggeration factor in use is

likely to be about unity (no exaggeration).

The traveltime depth T is usually defined to include both the time for the wave
going down and for the wave coming up. The factor of 2 thus introduced quickly disap-
pears into the rock velocity. Recall that zero-offset data sections are generally inter-
preted in terms of exploding-reflector wave fields. To make the correspondence, the

rock velocity is halved for the wave analysis:

r= 22 _ _z (1)

The first task in interpretation of seismic data is to figure out the approximate
numerical value of the vertical exaggeration. It is doubtful that it will be printed on
the data header for the simple reason that it is not exactly known. This is because the
seismic velocity is not exactly known. Furthermore, the velocity usually increases with
depth, which means that the vertical exaggeration decreases with depth. For velocity-

stratified media, we may write the time-to-depth conversion formula

e) = [ By or ST -1 (2)
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Hyperbola Summation and Semicircle Supefposition Methods

These methods are the most comprehensible of all known methods. Conceptually,
at least, they seem to predate the use of computers. Computer implementations of
these methods seem to predate the exploding-reflector concept, and tbey certainly
predate the idea of downward extrapolating a wave field with ezp(ik,z) followed by
imaging at ¢=0.

First of all, recall the equation for a conic section, a circle in (zr,z)-space or a

hyperbola in (z,t)-space. With traveltime depth 7, we get

z? + 2% = %R (3a)
Ia 2
—‘U—E + 7% = ¢ (3b)

Figure 1 illustrates the circle-superposition method. Taking the data field to con-
tain a few impulse functions, then the output should be a superposition of the appropri-
ate semicircles. Each semicircle denotes the spherical reflector earth model, which
would be implied by a dataset with a single pulse. Taking the data field to be a
thousand seismograms of a thousand points each, then the output is a superposition of
a million semicircles. Since a seismogram has both positive and negative polarities,
about half the semicircles will be superposed with negative polarities. The resulting
superposition could look like almost anything. Indeed, the semicircles might mutually
destroy one another almost everywhere except at one isolated impulse in (z,7)-space.
Should this happen you might rightly suspect that the input data section in (z,t)-
space is a Huygens secondary source, namely energy concentrated along a hyperbola.

This leads us to the hyperbola summation method.

The hyperbola summation method of migration is depicted in figure 2. The idea is
to create one point in (z,7)-space at a time, unlike the semicircle method, where each
point in (z,7)-space is built up bit by bit as the one million semicircles are stacked
together. To create one fixed point in the output (z,7)-space, a hyperbola, equation
(3b), is imagined set down with its top upon the corresponding position of (z,f)-space.
All data values touching the hyperbola are added together to produce a value for the
output at the appropriate place in (z,7)-space. In the same way, all other locations in

(z,7)-space are filled.

The opposite of data processing, building models from data, is constructing syn-
thetic data from models. By means of a slight modification, the above two processing

programs can be converted to modeling programs. Instead of hyperbola summation or
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SOURCE X ——e RECEIVER

LOCI OF EQUAL
TRAVEL TIMES

INPUT TRACE

FIG. 1. [from Schneider, W. A., 1971, Developments in seismic data processing and
analysis (1968-1970): Geophysics, v. 36, no. 8, p. 1043-1073] The ---—- - process may be
described in numerous ways; however, two very simple and equally valid representa-
tions are indicated in figures 1 and 2. Shown here is a representation of the process in
terms of what happens to a single input trace plotted in depth (time may also be used)
midway between its source and receiver. Each amplitude value of this trace is mapped
into the subsurface along a curve representing the loci of points for which the travel-
time from source to reflection point to receiver is constant. If the velocity is constant,
these curves are ellipses with source and receiver as foci. The picture produced by
this operation is simply a wavefront chart modulated by the trace amplitude informa-
tion. This clearly is not a useful image in itself, but when the map is composited with
similar maps from neighboring traces (and common-depth-point traces of different
offsets), useful subsurface images are produced by virtue of constructive and destruc-
tive interference between wavefronts in the classical Huygens sense. For example,
wavefronts from neighboring traces will all intersect on a diffraction source, adding
constructively to produce an image of the diffractor in the form of a high-amplitude
blob whose (z,z) resolution is controlled by the pulse bandwidth and the horizontal
aperture of the array of neighboring traces composited. For a reflecting surface, on
the other hand, wavefronts from adjacent traces are tangent to the surface and pro-
duce an image of the reflector by constructive interference of overlapping portions of
adjacent wavefronts. In subsurface regions devoid of reflecting and scattering bodies,
the wavefronts tend to cancel by random addition.

semicircle superposition, one does hyperbola superposition or semicircle summation.
You might wonder whether the processing programs really are the inverse to the
modeling programs. You might also wonder whether the two different methods of
modeling or processing are equivalent. If they differ, which is better? Clearly some
facts which have been glossed over are (1) the angle-dependence of amplitude (obli-
quity function) of the Huygens waveform, (2) spherical spreading of energy, and (3) the

phase shift on the Huygens waveform. Actually, results are reasonably good even
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OUTPUT TRACE

FIG. 2. (from Schneider, 1971 - see figure 1 caption for complete reference) A second
description of the --——-- process is provided here. The process is represented in
terms of how an output trace is developed from an ensemble of input traces, shown as
CDP-stacked traces in the upper half of the figure. The output in the lower half reflects
how each amplitude value at (z.z) is obtained by summing input amplitudes along the
traveltime curve shown. This curve defines a diffiraction hyperbola, and if a diffraction
source existed in the subsurface at the output point shown, a large amplitude would
result. The process also works for reflectors since we may regard a reflector as a con-

tinuum of diffracting elements whose individual images merge to produce a smooth
continuous boundary.

without these. Since proper migration is an all-pass filter, the inverse to the filter
should be simply its time reverse. So crosscorrelating the data (a superposition of
hyperbolas) with another hyperbola should result in a filter that is a pretty good

inverse to the filter which is a delta function on a hyperbola.

As later methods of migration were developed, the deficiencies of the earlier
methods became more clearly understood, and were largely correctable by careful
implementation. One advantage of the later methods was that they implemented true
all-pass filters. Such migrations preserve the general appearance of the data. This
suggests restoration of high frequencies, which tend to be destroyed by hyperbolic
integrations. Work by Trorey, Schneider, Hilterman, and possibly others with the Kir-
choff diffraction integral suggested quantitative means of bringing hyperbola methods
into agreement with other methods, at least for constant velocity. Common terminol-

ogy nowadays is to refer to any hyperbola or semicircular method as a Kirchoff
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method, although, strictly speaking, thé Kirchoff integral applies only in the constant-

velocity case.

There seems to be no automatic method for migrating data which is spatially
aliased (a common problem). The hyperbola-sum-type methods run the risk that the
migration operator itself can become spatially aliased. This is a situation to be avoided
by means of careful implementation. The first thing to realize is that you should be
integrating along a hyperbolic trajectory. A summation incorporating only one point
per trace is a poor approximation. It is better to incorporate more points. as depicted

in figure 3.

%2’

o’

FIG. 3. For a low velocity hyperbola, integration will require more than one point per
channel.

The likelihood of getting an aliased operator increases where the hyperbola is steep-
sloped. In production examples an aliased operator often stands out on the seafioor
reflection where -- although it may be perfectly flat - it acquires a noisy precursor

from the steep-flanked hyperbola of the water path. Figure 4 shows an example.



-
~

10 13

FIG. 4. (from "Wave equation migration: two approaches,” 1975, a Western Geophysical
brochure) Kirchofl-summation migration. A complex of interfering diffractions has
been resolved into a geologically plausible section showing tight folding and faulting.
No muting of traces above the water bottom has been used in these examples, so that

the high level of "migration noise" generated by the Kirchoff-summation method can be
seen.

The Phase-Shift Method

The phase-shift method proceeds straightforwardly by extrapolating downward
with exp(ik,z) and subsequently evaluating the wave field at £=0 (that is, when the
reflectors explode). Of all the wide-angle methods it most easily incorporates depth
variation in velocity. Even the phase angle and obliquity function are correctly
included, automatically. Unlike Kirchoff methods, there is no danger of aliasing the
operator. This method is also quite comprehensible. Once the exploding-reflector con-
cept and wave-extrapolation concept became known, a number of workers indepen-
dently developed phase-shift migration programs (among them Gazdag, Stoffa, who

else?).

To start with, you need to do a two-dimensional Fourier transform (2D-FT) of your

dataset. Some practical details about 2D-FT are described in a later section. Then you
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push the transformed data values, all in the (w,k,)-plane, downward to a depth Az by
means of multiplication by

vk,
w

)

lAz= - = -
e exp[ 1v1

211/
N

Ordinarily the time-sample interval At for the output migrated section will be chosen
equal to the time-sample rate of the input data (often 4 ms). Thus, choosing the depth

Az = vAr, the downward-extrapolation operator for a single time unit is

=BT ®

One hardly ever knows the velocity very precisely, so although the velocity may be

exp{-—i w AT

increasing fairly steadily with depth, it is often approximated as constant in about 20
layers, rather than slowly changing at each of the thousand or so points on a seismo-
gram. The advantage of velocity being constant in layers is one of economy. Once the
square root and the sines and cosines in (5) have been computed, then the complex

multiplier (5) can be re-used for all 20 layers.

Next is the task of imaging. At each depth we imagine an inverse Fourier
transform followed by selection of the value at £=0. Luckily, only the Fourier
transform at one point, ¢=0, is needed, so that is all that need be computed. It is
especially easy since the value at £=0 is merely a summation of each w frequency
component. Finally, inverse Fourier transform k, to z. The overall migration pro-

cess may be summarized as follows.
P(wk,) = FT[p(t.z)]

For 7= AT, 2A1, ..., end of time axis on seismogram
For all k,:
For all w

P(wk;) = P(wk,) exp] — i w AT cos 8(w,k)]
End loop on w
Image(k,.T) = 3 P
w

End loop on k,
Image(z,7) = FT[Image (k,,7)]
End loop on T
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The Stolt Method

On most computers the Stolt method of migration is the fastest method, by a con-
siderable margin. For many applications, this will be the most important attribute to
consider. In a constant-velocity earth the Huygens wave source is treated exactly
correctly. Like the other methods, this migration method can be reversed and made
into a modeling program. One drawback, a matter of principle, is that the method does
not handle depth variation in velocity. Despite the fact that migration effects tend to
be in proportion to velocity squared, this drawback has been rumored to be largely
offset in practice by the existence of an approximate correction by an axis-stretching
procedure. A practical drawback is the periodicity of all the Fourier transforms. In
principle this is no problem at all, being solvable by a sufficient surrounding of the data
by zeros. A single line sketch of the Stolt method is this:

L

P(z.t) » P(ky.w) » Plky. ky = ?—kf

1/8
] - P(z.z)

To see why this works, begin with the input-output relation for downward extrapo-

lation of wave fields:
th_ 2
P(wkz,z) = e * P(wkz.z=0) (8)
Perform a two-dimensional inverse Fourier transform:
p(t.z.z) = f f g Kt mtat ik, P(w.k;.0) dw dk;
Apply the idea that the image at (z,z) is the exploding reflector wave at time ¢=0:

Image(z,z) = [ [ e** e*“*” p(ok,,0) do dk, (7)

Equation (7) states the answer we want, but it is in a very unattractive form. The
computational effort implied by (7) is that a two dimensional integration must be done
for each and every z-level. The Stolt procedure will be to convert the three dimen-

sional calculation implied by (7) to a single two dimensional fourier transform.

So far we have done nothing to specify that we have an upgoing wave instead of a
downgoing wave. If w were always positive, then +k, would always refer to a downgo-
ing wave and -k, to an upgoing wave. We need negative frequencies w as well as posi-
tive frequencies in order to describe waves that have real values (not complex). The
direction of the wave is defined by the relationship of z and ¢ required to keep the

phase constant in the expression exp(-iwt + i,z ). So the proper description for a
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downgoing wave is that the signs of w and k, must agree. For an upgoing wave it is
the reverse. With this clarification we prepare to change the integration variable in (7)

from o to k,.

—Sgn(kz)1'V lkf + kf' (Ba)

W o=
dow ky

= —-sgnik,) v 8b
dk, g ( z) j::7zz;:fzz; ( )
dw - '—v‘k!l (BC)

dk, +VEE+ k2

Now we will introduce (8) into (7) including also a minus sign so that the integration on
k., may be taken from minus infinity to plus infinity as was the integration on w.

vk, |

k;!+ k; .

rmage(z,2) = [ [e%** %" { plu(k,.k,).kz.0] dk, dk, (9)
Equation (9) states the final result as a two-dimensional inverse Fourier transform. The

Stolt migration method is a direct implementation of (8). The steps of the algorithm

are:

1. Double Fourier transform field data from p(¢.z,0) to P(w.k,.0).

2. Reinterpolate P onto a new mesh so that it is a function of k: and k,. Mul-

tiply P by the scale factor (which has the interpretation cos ¥).
3. Inverse Fourier transform to (z,z)-space.

The major implementation difficulty with the Stolt algorithm is the interpolation.
Recall that a delta function late on the time axis is a rapidly oscillating function of fre-
quency. Consider the difficulty of interpolating functions oscillating near the Nyquist
frequency. An example by Walter S. Lynn in figure 5 shows that using linear interpola-
tion causes the second half of the time axis to become useless, giving impulse
responses which are semicircles downward instead of upward. This means we need an
extraordinary amount of zero padding on the time axis. To keep memory costs reason-

able, the algorithm can be reorganized.

We need storage space for a long vector, say u(t), (about four times as much as
for a typical seismogram). If you have an array processor, that is where this vector
belongs. The Stolt algorithm becomes:
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FIG. 5. (Lynn) Impulse response of Stolt method using linear interpolation. The
downward-arcing circle is a processing artifact of the linear interpolation in the fre-
quency domain. It worsens rapidly as the delay of the impulse approaches half the
length of the time axis. This figure is based on the complex to complex FT, so the max-
imum frequency is 2n. With the real to complex FT the maximum frequency is m, so
hopefully the problem arises twice as late on the time (or depth) axis.

P(k;.t) = FT[p(z.t)]

For all k,:
u(t) = P(k,.t)
Pad out remaining length of u with zeros.
U(w) = FT[u(t)] e

~ /2 2~V lks

U(kz) - U[ kz"'kz]m
u(z) = FT[U(k,)]
P(ky.z) = u(z)

End loop on k..

p(z.z) = FT[P(k,.2)]

Even this improved algorithm is not trouble-free. The periodicity in z still requires

padding with lots of zeros on =x.



Subjective Comparison and Evaluation of Methods

The three basic methods of migration in this section are compar
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table 1.
Hyperbola Sum Phase Shift Stolt
Semicircle Sup.
Speed slow average very fast
Memory organization awkward good good
v(z) easily easily approximately by

stretching

wide angle?

Beware of data

Beware of data

Beware of data

alias and opera- | alias. alias.
tor alias.
Correct phase and | possible with | easily for any | yes, for const v
obliquity? some effort for | v(z)
const v
wraparound noise? no worst on =z, but | (z,z.t) a prob-
reasonable lem
v(z) Production pro- | no known pro- | no known
grams have seri- | duction program research pro-
ous pitfalis. gram

TABLE 1. Subjective comparison of three wide-angle migration methods.

ed subjectively in

Finally, the perspective of later chapters allows some remarks on the overall qual-

ity of the wide-angle methods as a group. Their greatest weakness is their near inabil-

ity to deal with lateral velocity variation. Their greatest strength, the wide-angle capa-

bility, is lessened in value by the weakness of other links in the data collection and pro-

cessing chain. Namely:

1. Shot-to-geophone offset angles are commonly large but ignored. A CDP stack

is not a zero-offset section.
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2. Why process to the very wide angles seen in the survey line when even tiny

angles perpendicular to the line are being ignored?

3. Data is often insufficiently densely sampled to represent steéply dipping data
without aliasing.

4. Accuracy in knowledge of velocity is seldom sufficient to justify processing to
wide angles. Recall that the output is a migrated time section. Arbitrary
velocity error makes no difference when processing horizontal bedding. Velo-
city error sensitivity increases with angle up to 90 degrees, where the accu-
racy needed to avoid destructive interference is in the ratio of half a seismic
wavelength divided by the traveltime. Commonly this is about 1%, much less

than the common accuracy of velocity knowledge. At 45 degrees it is 1.4%.

Exercises

1.

Define the computer program for modeling with the phase shift method -- that is,
create the surface data P(z,2=0,t) from some exploding reflector distribution
P(z,z,t=0).

Define the computer program for the inverse to the Stolt algorithm - that is,

create synthetic data from a given model.
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1.4 THE PHYSICAL BASIS

Previous sections have considered the geomefrical aspects of wave propagation
and how they relate to seismic imaging. Now we consider how the physical aspects
relate to imaging. The propagation medium has a mass density and compressibility.
The waves have a material acceleration vector and a pressure gradient. Static defor-
mation, ground roll, shear, rigidity, dissipation, sedimentary deposition -- how are

these related to our image construction?

Derivation of the Acoustic Wave Equation

The acoustic wave equation describes sound waves in a liquid or gas. Another
more complicated set of equations describes elastic waves in solids. We begin with the
acoustic case. Newton'’s law of momentum conservation says that a small volume
within the gas will accelerate if there is an applied force. The force arises from pres-

sure differences at opposite sides of the small volume. Define

p = mass per unit volume of the fluid
u = velocity flow of fluid in the z-direction
w = velocity flow of fluid in the z-direction
P = pressure in the fluid
Newton's law says
mass x acceleration = force = — pressure gradient
du _ _ 0P
Pt = oz (12)
ow _ _ 9P
P75t = o0z (1b)

The second physical process to consider is the possibility of energy storage by
compression and volume change. If the velocity vector u at z + Ar exceeds that at
z then the flow is said to be diverging. In other words, the small volume between z
and z + Az is expanding. This expansion must lead to a pressure drop. The amount

of the pressure drop is in proportion to a property of the fluid called its
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incompressibility K. In one dimension the equation is

pressure decrease = (incompressibility) x (divergence of velocity )

arP du

-~ = Ko (2e)
In two dimensions it is

oFr ou dw

ot = Koz * 52 (2b)

To make the one-dimensional wave equation from (1a) and (2a), first divide (1a) by p

and take its z-derivative:
L0y =2 L0P (3)

Second, the time-derivative of (2) will be taken. In solid-earth sciences we are for-
tunate that the material does not change during the course of the experiments. This

means that K is a constant function of time

#*P _ _ 08 8
stz - K o oz v (4)

Inserting (3) into (4), the one-dimensional scalar wave equation appears

9tP _ d 1 8P

% = X% b e (52)
In two space dimensions, the scalar wave equation is
2
%=Kg;%gz.+%%g_z]p (50)
Expand derivatives.
A T
at? 62: 8z 8z = 0z oz

Let us compare the wave equation (6) with our earlier assertion that a wave field

could be represented by a complex exponential, namely
P = exp(-iwt + ik, z + ik, z) (7)

Inserting (7) as a trial solution into (6) we can cancel the complex exponential, getting
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K n K
-w2+—p—(kf+k,2) =z

(8)

9 4 4+ 80
az e 9z

In the substitution of (7) into (8) it was assumed that the three frequencies (v,k, k, )
were independent of space, but this will not be consistent with (8) unless we have the
material properties p and X independent of space. This is an example of the general
fact that Fourier methods fail on equations with space-variable coefficients. We will
return at length to the issue of space-variable material properties. Taking the material
properties to be constant, equation (8) becomes the dispersion relation of the two-
dimensional scalar wave equation

ma
K/p

= k2+ lc,,2 (9)

Earlier an equation like (8) was developed considering only the geometrical behavior of
waves. In that development we had wave velocity squared where K,/p stands in equa-

tion (9). Thus there is the the association

v? =

K
r (10)

Reflections and the High Frequency Limit

It is well known that the contact between two different materials can cause acous-
tic reflections. A material contact is defined to be a place where either K or p
changes by a spatial step function. In one dimension either 8K /0x or 8p/dz or
both would be infinite at a point. It is well known that either can cause a reflection. So
it is perhaps a little surprising that the density derivative is explicitly found in (8) but
the incompressibility derivative is not explicitly there. This means that if we drop the
density gradients in (6) we will not lose all possible reflections. Dropping the terms
would slightly simplify further analysis. Since constant density is a reasonable enough

physical situation to consider, the terms are often dropped.

There are also some well-known mathematical circumstances under which the
first-order terms may be ignored. Suppose the two media in contact gradually blend
into one another so that 0p/0z is less than infinity. Suppose we are interested only in
high frequencies, that is, large values of w, k,, k,. As the frequencies tend to infinity
in (8), the second-order terms get larger much faster than the gradient terms which

are first order. In that mathematical limit the gradient terms may be neglected.
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Of course, practical situations may arise for which these terms need to be
included. It is usually not difficult to do so. I believe the terms are generally neglected
for the same reason we often write equations in two dimensions instead of three.. The

extension is usually possible but it is rarely required.

Evanescence and Ground Roll

Completing the physical derivation of the dispersion relation

ma
kP+ ki = —5 (11)
v

we can now have a new respect for it. It carries more meaning than could have been
anticipated on the basis of the earlier geometrical derivation. We originally thought of
it merely in terms of sin®$ + cos®9 = 1 where sin®d = vk, /w. Originally we attached
no meaning to sin ¥ exceeding unity, in other words, to vk, exceeding w. Now we
can. In fact there was a hidden ambiguity in two of the migration methods we con-
sidered. Since data could be an arbitrary function in the (t,z )-plane, then its Fourier
transform could be an arbitrary function in the (w,k,)-plane. So we certainly could

find energy with an angle sine greater than one. What should we do with it?

In the most extreme case, w =0, k, is real, and k, = tik,. This means that the
depth-dependence of the physical solution is a growing or a damped exponential. In
the elastic-wave situation it describes the deformation of ground under a parked air-
plane. Only if the airplane can move faster than the speed of sound in the earth will
there be a wave radiated into the earth. Moving at a subsonic speed the deformation is

said to be quasi- static.

Perhaps a better physical description is to imagine a sinusoidally corrugated
sheet. One sometimes sees such metallic sheet used for roofs or garage doorways. The
wavelength of the corrugation fixes k,. Moving such a sheet past your ear at velocity
V you would hear a frequency of oscillation equal to Vk,, regardless of whether V is
larger or smaller than the speed of sound in air. But the sound you hear would get
weaker exponentially with distance from the sheet unless the plate moved very fast,

V > v, in which case the moving sheet would be radiating sound to great distances.

What should a migration program do with such low-velocity energy? Theoretically
it should be exponentially damped. Quantitatively the damping is so rapid that the
offending region of (w,k,)-space may as well be replaced by zeros. You might not

expect to find a lot of energy in your data at these low velocities. Actually, with land
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data, the low-velocity soil layer often creates conditions under which there can be a lot
of energy at these low velocities, so much that this is a major problem. This energy is
called "ground roll.” It could be defined 8s any energy moving with arvelocity less than
that of the velocity of the rocks at the depths of interest. Such energy is unwanted
noise since its exponential decay effectively prevents it from being influenced by deep

objects of interest.

Shear Waves and Lithology

In earthquake seismology and in laboratory measurement there are two clearly
observed velocities. The faster velocity is a pressure wave (p-wave) and the slower
velocity (by about a factor of two) is a shear wave (s-wave). Theory, field data, and

laboratory measurement are in excellent agreement.

I have been watching for shear waves in the reflection seismic data that are
recorded for petroleum prospecting. I have never found them. They should show up
routinely in velocity surveys. In stacked sections they should appear to be similar to
multiple reflections. Shear waves should have good diagnostic value in exploration.
But the likelihood of seeing shear waves in conventional data seems to be so remote

that most interpreters have given up trying.

To compound this puzzle, reflection data are usually of better quality than either

earthquake data or laboratory data.

Shear waves can be seen in reflection data when special transverse generating and
recording equipment is set up for the task. The puzzle is why p-to-s conversions are
not routinely observed with the standard operating arrangement. Theory predicts that
eévery p-wave which hits an interface at an angle - the usual case at nonzero offset --
should generate an s-wave which is nicely separated from the p arrival. So why don't

we see converted waves in conventional data? Four reasons may be offered:
1.  Inmarine data there would have to be a conversion to p for the water path.
2. Inland data the soil seems to be very absorptive of shear.
3. Explosive sources tend to generate more p than s.
4. Vertical component recorders tend to see p better than s.

I find the above four reasons are not convincing because they do not scale ampli-
tudes by very large values. We record a wide dynamic ratige in & wide variety of
environments. We frequently display data with automatic gain econtrol (AGC). Weak-

ened amplitude appears to be insufficient cause for the failure of observation.
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As described theoretically, expe.rimen‘tally, and in observational earthquake
seismology, pressure to shear wave conversion is associated with planar contact
between two dissimilar materials. With earthquakes, the earth’s surface and the inter-
face between the liquid core are solid mantle are two reliable producers of converted
waves. Other boundaries are more problematic in their effect. In sedimentary geology
there seems to be an abundance of flat layers. But are they really flat enough in their

shear characteristics?

Strange as it may seem, even for p-waves there is not good agreement about the
true nature of seismic reflections. Physicists tend to think of the reflections as being
caused by the interface between rock types, as a sand-to-shale contact. Many geolo-
gists, particularly a group known as seismic stratigraphers, have a different concept.
They have studied thousands of miles of reflection data along with well logs. They
believe a reflection marks a constant geological time horizon. They assert that a long,
continuous reflector could represent terrigenous deposition on one end and marine
deposition on the other end with a variety of rock types going from one extreme to the

other.

Looking at sedimentary rocks you can gain an appreciation for both points of view.
Generally speaking, most reservoir rocks are sandstones and most sands are deposited
near the mouth of a river where the water velocity is no longer sufficient to move them.
The sands are never laid down in flat layers. They deposit along the terminus of the
sand bars found at the river mouth. Commonly they deposit along a slope of 25

degrees or so, as indicated in figure 1.

The shales (more fine-grained material, like dirt) deposit in deeper water and tend
to be somewhat more layered. Specific locations of sand deposition change with the

passing of storms and seasons leaving a wood-grain-like appearance in the rock.

The delta itself is a complicated, ever-changing arrangement of channels and bars.
Throughout time the delta moves up and down the coastline. At any one time it seems
to be moving seaward as the deposits are made, but subsequent settling, compression,

or raising of sea level can cause it to move landward.

Sand is important because its porosity and permeability enable oil to accumulate
in traps. Shale is important because it contains the products of former life on earth,
and their hydrocarbons. These escape to the sands, but often not to the earth's sur-
face, due to covering impermeable shales. The acoustic properties of sands and shales
often overlap, though there is a slight tendency for shales to have a lower velocity. We
geophysicists on the surface see with seismic wavelengths (® 30 meters), the final

interbedded three-dimensional mixture of sands and shales.
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FIG. 1. Sands (petroleum reservoir rocks) deposit on fairly steep slopes where rivers
run into the ocean.

Although there is not a great deal of transversely generated shear-wave data avail-
able, some indications are that such data give a rather different picture of the earth,

one which is difficult to relate to the p-wave picture.

Could it be that the nature of depositional rocks is such that P —s conversions do
not occur? Or perhaps they do not occur in the organized way that p-reflections do,

thus contributing only to the chaos?

The failure of simple elastic equations to describe the observed absence of p-s
coupling is not the first failure of Newtonian theory. Even more remarkable and well-
documented is the situation with the seismic dissipation parameter @. It is observed
to be nearly a frequency-independent constant. Newtonian viscosity predicts inverse
frequency dependence. Many simple models fail by predicting a resonance absorption.
The heterogeneity of the rock, at all scales, seems to be an essential attribute to a suc-

cessful theory (such as that in the section on impedance).

Finally, departure of theory from experiment is not cause for embarrassment: it is
indicative of opportunities for discovery. I should not assert that conversions do not
occur. Perhaps they do, and with more careful analysis we will observe them. They

may provide the best prospecting tool yet!



228

Philosophy of Inverse Problems

Physical processes are often simulated with computers in much the way that they
occur in nature. The machine memory is used as a map of physical space, and time
evolves in the calculation as it does in the simulated world. A nice thing about solving
problems this way is that there is never any question about the uniqueness of the solu-
tion. Errors of initial data and model discretization do not tend to have a catastrophic
effect. Exploration geophysicists, however, rarely solve problems of this type. Instead
of having (z,z)-space in the computer memory and letting ¢ evolve, we usually have
(z,t)-space in memory and we are extrapolating in depth 2. This is basically our busi-
ness, taking information (data) at the earth’s surface and attempting to extrapolate to
information at depth. Stable time evolution in nature provides no "existence proof"
that what we want to do is reasonable, stable, or even possible. When it isn't, we must

redefine our goals.

Commonly the time-evolution problems are called Jorward problems and the
depth-extrapolation problems are called inverse problems. In a forward problem, such
as with acoustic waves, it is clear what you need and what you can get. You need the
density, o(z,2z) and incompressibility X(z,z) and you need to know the initial source
of disturbance. You can get the wave field everywhere at later times but you usually
only want it at the earth’s surface for comparison to some data. In the inverse problem
you have the waves seen at the surface, the source specification, and you would like to
determine the material properties p(z,z) and K(z.z). What has been learned from
experience is that the observations cannot give reasonable estimates of images or

maps of p and K.

Luckily, it has been discovered that certain functions of p and K can be reliably
determined and mapped. Speaking in the sense of production data processing, not
research, it can be said that the density p cannot be mapped at all so it may as well
be set equal to a constant or to some laboratory-determined function of velocity. What
we can determine is the velocity, namely v® = K /p. Even this is not determined in the
unambiguous sense we might like. We see velocity through two different, virtually non-
overlapping windows. The most valuable window is the one on high spatial frequencies.
Reflections may be imagined as coming from cracks within rocks of constant velocity.
The imagined cracks are small delta functions added to the constant-velocity field. The
cracks give the velocity field a high spatial-frequency content which is sensed through
the typical 10 to 100 Hz spectral window of good-quality field data. In reality we prob-

ably do not see cracks. We see the sedimentary configurations described earlier.
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The other window on the velocity function will be described in more detail in
Chapter 4. It involves study of traveltime with respect to variation of shot-to-geophone
offset. With this second window we consider ourselves to be fortunate when we can dis-
cern sixteen independent velocity measurements on a 4-second reﬂ;action time axis.

So this window goes from zero to about 2 Hz.

In routine processing and in this book the two views of the velocity are treated as
independent entities. The function in the big window will be called the reflectivity,
c(z,z), and the function in the small window will be called (confusingly) the velocity v,
usually v(z).

In mathematics the solution to an inverse problem has come to mean the "deter-
mination” of material properties from wave fields. Often this is achieved by means of a
"convergent sequence." We are considerably less precise (more inclusive) about what
we mean by "determination.” In Chapters 1-3 of this book we "determine" reflectors by
the exploding-reflection concept. In Chapter 4 we incorporate shot-to-geophone offset,
and we "determine" reflectivity c(z,z) and velocity v(z) by means of a buried-
experiment concept. In Chapter 5 we suppress multiple reflections and find "true"
amplitudes of reflections by an imaging concept which seeks to have the upcoming
wave vanish before the onset of the downgoing wave. Other imaging concepts seem
likely to result from future processing schemes. It might be possible to show that
some of our "determinations” coincide with those of mathematicians, but that is not

our goal.
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1.5 THE SINGLE-SQUARE-ROOT EQUATION

The function of the single- square- root equation is to extrapolate waves down into
the earth. This equation seems to be the basis for all valid migration methods. It is a
partial differential equation of transcendental type. It matches the ordinary scalar

wave equation in some respects but departs from it in others.

Snell Waves

It is natural to begin studies of waves by using equations describing plane waves in
media of constant velocity. However, in reflection seismic surveys the velocity con-
trast between shallowest and deepest reflectors ordinarily exceeds a factor of two. So
in the analysis of field data, depth variation of velocity is almost always included. Rays
bend and wavefronts curve. A Snell wave will be defined to be the natural extension of
the idea of a plane wave for a medium with depth-variable velocity v(z). For a
stratified medium v=v(z) we will define the single- square- root equation, that is, we
will define its form in stratified media v=v(z) to be a differential equation with a Snell
wave as its solution. The diagram in figure 1 illustrates the geometry of a downgoing

Snell wave.

From the diagram we see the differentials

di sin ¥

— = 1
dz v (1a)
di — Ctos LS (1b)

dz v

The two equations define two (inverse) speeds. First is a horizontal speed, measured
along the earth’s surface, called the horizontal phase velocity. Second is a vertical
speed, measurable in a borehole, called the vertical phase velocity. Notice that both
these speeds ezceed the velocity v of wave propagation in the medium. Reference to

wave fronts gives speeds larger than v and reference to rays gives speeds smaller.

A Snell wave could be generated by a source function moving horizontally along
the earth’'s surface at a speed dz_/df. By symmetry (the medium is invariant under

lateral shift), the horizontal speed dz/dt seen at any other depth, say 2z, must equal
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FIG. 1. Downgoing fronts and rays in stratified medium v(z)

that seen at the surface 2z=0. This depth-invariant parameter, or rather its inverse
dt /dzx, is known as Snell's parameter. It is noteworthy that Snell’s parameter,
denoted p, is directly observable at the surface, whereas neither v nor ¥ are
directly observable. Since p is not only observable, but constant in depth, it is cus-

tomary to use it to eliminate ¥ from equation {1):

dt _ sind _
4 T v =P (2a)
1/2
dt cos ¥ 1 2
ar _ - 2b
dZ v 'U(z)z p ( )

¥With plane waves we speak of their angle of propagation. With Snell waves we speak

instead of their Snell parameter p.

Taking the Snell wave to go through the origin at time zero, an expression for the

arrival time of the Snell wave at any other location is given by

t{z,z) = Sizﬂ x +f¥dz (3a)
()
L 1 21/2
= pzx +_(/; 'u(z)z -p dz (Sb)
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The validity of (3b) is readily checked by computing 8¢ 70z and 8¢ 8z, then comparing
with (2).

An arbitrary waveform f(t) may be carried by the Snell wave. I:Tsing (3) to define
a delay time to the location (z,z), the delayed wave f (t—t,) is

1/2
dz (4)

Snell wave field = f{t - px - f 2
0

1
v(z)? P

Time-Shifting Equations

An important task is to predict the wave field inside the earth given the waveform
at the surface. For a downgoing plane wave this can be done by the time-shifting par-

tial differential equation

aP _ _ 1 aP

6z = " ot )
as may be readily verified by substituting the trial solutions
P = f[t - %] for constant v (6)
or
{ * dz
P = t - [ —F=— or v(z 7)
- Gy] forv@ (

Heeding some important restrictions, this also works for non-vertically incident

waves with the partial differential equation

oP _ _dt 8P
8z = dz 68t (8)

which has the solution
% dt
P=f(t—px—[zz—dz) (9)

In interpreting (8) and (9) we recall that dz /dt is the apparent velocity in a borehole.
rhe partial derivative of wave field P with respect to depth 2z is taken at constant =z,
i.e., the wave is extrapolated down the borehole. The idea that downward extrapolation

can be achieved by merely time-shifting clearly holds only for situations in which a
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single Snell wave is present, that is, the same arbitrary time function must be seen at

all locations.

Substitution from (1) also enables us to rewrite (8) in the various forms

8P _ _ cosd 8P

= 10
oz v at (102)
2
P 1 2| P
P _ _ il 10b
3z vz P ot (100)
aP 1 at |*['* ap
P _ _ _ |8t aP 10
0z v(z)? dz at (102)

Since dt/dr=p can be measured along the surface of the earth, it seems that equa-
tion (10c), along with an assumed velocity v(z) and some observed data P(z,t), would
enable us to determine 9P 78z, which is the necessary first step of downward continua-
tion. But we must not forget that we are dealing by assumption with a single Snell wave
and not a superposition of several Snell waves. Superposition of different waveforms on
different Snell paths will cause different time functions to be seen at different places.
Then a mere time-shift will not achieve downward continuation. Luckily, a complicated
wave field that is variable from place to place may be decomposed, by mathematical
techniques not yet discussed, into many Snell waves, each of which can be downward
extrapolated with the differential equation (10) or its solution (8). One such decompo-

sition technique is Fourier analysis.

Fourier analyzing the function f(z,t,2=0) seen on the earth’s surface, we will
need the Fourier kernel exp(—iwt + ik,z). Moving on the earth’s surface at an inverse
speed of df /dr=k,/w, the phase of the Fourier kernel, hence the kernel itself,
remains constant. Only those sinusoidal components which move at the same speed as
the Snell wave can have a non-zero correlation with it. So if the disturbance is a single
Snell wave then all Fourier components vanish except for those which satisfy p =k, /.

You should memorize these basic relations:

i k
dt Bin ¥ __w_z_ (11)

In seismology it is very likely that the appearance of any square-root function comes
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from use of (11) to make a cosine,

Utilization of this Fourier-domain interpretation of Snell's parameter p enables
us to write the square-root equation (10) in an even more useful form. But first we
must re-express the square root equation in the Fourier domain, which we do by

replacing the 9,79t operator in (10) by ~iw. The result is

8P _ . _iw [1_[11(2)162
W

R
9z~ v(z) ] il (12)

At present it is equivalent to specify either the differential equation (12) or its solution

(9) with s being the complex exponential, namely

k2 |'*
1 z] dz

FP = exp —iw t—pz—{[v(z)a——é- (13)

W

Later, when we consider lateral velocity variation v(z)., the solution (13) becomes
wrong., whereas the differential equation (12) indicates a useful computational algo-
rithm. But before we go on to lateral velocity gradients we need to consider more

carefully the situation with vertical velocity gradients.

Velocity Gradients

Inserting the Snell wave-field expression into the scalar wave equation, one discov-
ers that our definition of a Snell wave does not satisfy the scalar wave equation. The
discrepancy arises only in the presence of velocity gradients. In other words, if there
is a shallow constant velocity vy and a deep constant velocity vp, the equation is
satisfied everywhere except where v; changes to v;. Solutions to the scalar wave equa-
tion must show amplitude changes across an interface, because of transmission
coeflicients. Our definition of a Snell wave is a wave of constant amplitude with depth.
This raises the question of whether our definition is wrong and whether we could better
use the scalar wave equation, rather than the single square root equation, to downward
extrapolate wave fields. Several compelling reasons will later be given as to why the
scalar wave equation should not be used for wave-field extrapolation. Actually, the
amplitudes can be correctly incorporated in the single- square-root equation, as indi-
cated by the exercises. The reason why it is customary not to do so is probably the
same reason that density gradients are commonly ignored. They add to the clutter in
writing equations while their contribution to better results, namely more correct

amplitudes and possible small phase shifts, has marginal utility. Indeed, if they are
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included then other deeper questions should also be considered, such as the question
of why we use the acoustic equation rather than various other forms of scalar elastic

equations.

Wave Equation + Exploding Reflectors # Migration

The scalar wave equation will not be advocated for wave extrapolation for three

reasons: (1) initial conditions, (2) unstable solutions, and (3) multiple reflections.

First, the scalar wave equation has a second depth z derivative. This means that
two boundary conditions are required on the z-axis. Since we observe at z=0, it
seems natural that these should be knowledge of P and dP,dz at z=0. But we don't
observe dP_/dz. Even supposing this difficulty could somehow be overcome, what
about the second difficulty?

Theoretically, the scalar wave equation contains evanescent waves, waves with low
apparent surface velocity, which will be either exponentially decaying or exponentially
growing with depth. When obtaining numerical solutions, it is likely to be difficult to
reject the growing solutions. Even if we are somehow able to achieve stability, the

third difficulty remains.

Where dissimilar media are in contact, that is, when the velocity is space-variable,
then there are reflected waves as well as transmitted waves at the interface. The mul-
tiple reflections in the exploding-reflector model differ from those on zero-offset sec-
tions, so the multiples generated will be incorrect for our application. Furthermore,
the multiples are likely to be seriously damaging because they will be generated at
high- amplitude signals and will migrate to positions where they interfere with low-
amplitude signals. Errors in transmission coeflicients are much less serious because
transmission errors on high-amplitude events remain with the high-amplitude events as

small scaling errors.

Exercises

1. Devise a mathematical expression for a plane wave which is a delta function of
time with propagation angle of 15 degrees from the vertical z-axis in the plus z direc-

tion. Express the result in the domain of
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(a) (t.z.z)

() (w.z.2)

() (wikzz)

(d) (w.p.2)

2. Find an amplitude function 4 (z) which, when multiplied by f in equation (9),

causes it to be a solution to the scalar wave equation in stratified media v(z).

3. Modify the single-square-root equation so that the result of exercise 1 is the

solution. Hint:

ar 1 a
3, Ccan bechanged to B(s) o2 B(z)P(z)
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1.6 MASTERY OF 2-D FOURIER TECHNIQUES

Here is a collection of helpful tips for those who will be involved in implementa-

tions of migration methods.

Signs and Scales in Fourier Transforms!

We have been doing Fourier transform on £, z, and 2z coordinates. On each coor-
dinate there is a choice for the sign convention of Fourier transform. Electrical
engineers have chosen one convention and physicists another. Both have good reasons
for their choices. Our circumstances more closely resemble those of physicists, so we

will use their convention, which for the inverse Fourier transformation is
pltwz) = [ [ [ "% plok, k,) dw dk, dk, (1)

The limits on the integrations and the scale factor differ in the continucus case from
the discrete case. We rarely do the transforms analytically in either case. The extra
notation required for limits and scales usually clutters rather than clarifies a discus-

sion. So we omit them altogether except when they play a useful role in the discussion.

The sign convention is more important. Because there are so many space axes
(later, midpoint and offset space axes are introduced and transformed as well), it is
worthwhile to establish a good sign convention. The approach of "changing the signs
around until it works"” can be perplexed by the number of possible permutations of the
number of signs to be changed. There are good reasons for the sign conventions
chosen by physicists, and once the reasons are known, it is easy to remember the con-

ventions.

First of all, waves should, by convention, move in the positive direction on the
space axis. This is especially evident on work for which the space axis is a radius.
Atoms, like geophysical sources, always radiate from a point to infinity, not the other
way around. So we always choose waves moving positively on any space axis. In equa-
tion (1) this means that the sign on the spatial frequencies must be opposite to the sign

on the temporal frequency.
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We could still change the sign of all three frequencies. But there is a reason not to
do so. There are more space axes than time axes. We'll see the fewest number of
minus signs and the fewest sign changes if we take the spatial gradient 8,8z, 8.0z,
etc. to be associated with the positive k-vector, i.e. with ik,, ik,, etc. Of course, we are

left associating the time derivative with —-iw.

This sign convention leaves us inconsistent with the practice of electrical
engineers who rarely work with space axes and naturally enough have chosen to associ-
ate 8,70¢ with +iw. The only good reason I know to adopt the engineering choice is that
we compute with an array processor built and microcoded by engineers who naturally
use their own sign convention. It doesn't make any difference on the programs which
transform complex-valued, time functions to complex-valued, frequency functions,
because then the sign convention is under user control. But it does make a difference
on the program which converts real time functions to complex frequency functions.
With the Stolt algorithm it is common to transform space first. Then the engineering
convention is an advantage. The way to live in both worlds is to imagine that the fre-
quencies produced by the program do not range from O to +m as the description says,
but that they range from 0 to —m. You can always take the complex conjugate of the

transform which will swap the sign of the w-axis.

How to Transpose a Big Matrix®

It is a lucky thing that we can easily transpose very large matrices. This is what
makes wave-equation seismic data processing reasonable on a mini-computer. The
transpose algorithm is simple but tricky. I shall begin, therefore, by describing a card
trick. I have in my hands a deck of cards from which I have removed the nines, tens,
and face cards. Let a, b, ¢, and d denote hearts, spades, clubs, and diamonds.

Also, I have arranged these cards in the order (let ace be denoted by a one):
la 14 1c 1d R2a 2b Z2c éd 3¢ - 8d
Now I deal the cards face up alternately, one onto pile A and one onto pile B. You see
PileA: 1la 1c Ra 2¢ 3a¢ 3c -+ B8e B8c
Pile B: 1b 1d 2b 2d 3b 3d -+ B8b 8d

Next I place pile A on top of (in front of) pile B, and again deal the cards out alternately
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into pile A' and pile B'. You see
PileA': 1la 2¢ 3a -+ B8a 16 26 -+ 8b
Pile B': 1lc 2 3¢ '+ B¢ 1d 2d -:' 8d

Now I place pile A' on top of B'. We started with all the aces together, the twos
together, etc. Now we have all the hearts together, the spades together, ete. So you
see that in just two deals of the cards, I have transposed the deck. We never spread the
cards out all over the table because we have never had randomly to access the deck.
We just made sequential passes over it. In principle, this algorithm transposes a matrix

requiring four magnetic tapes but almost no core memory.

Now let us try the inverse transpose. You see that it takes me three deals of the
cards rather than the fwo deals it took for the original transpose. This is because the
deck has 2% = 4 suits and 2% = 8 numbers. Actually, there is another algorithm which
will allow me to do the inverse tranpose in only two passes rather than three. You just
do everything backwards. Start with piles A'and B'. Then create pile A by alter-
nately selecting cards one from pile 4’ and one from pile B'. Likewise construct pile

B. Then do it one more time. This algorithm is the "merge" algorithm.

So we see that the matrix transpose of a matrix of size 2" x 2™ can be done by

the lesser of n or m passes over the data.

A variety of generalizations are possible. With 4 card piles we could work out tech-
niques for matrices of dimension 4™. This would decrease the number of passes but
increase the required number of tape drives. Likewise it turns out that arbitrary order

may be factored into primes, ete. But this takes us too far afield.

If you wish to minimize the number of passes over the data, you turn out to max-
imize the number of tapes. In reality you probably won’t be using real tapes when you
are transposing. But you are likely to be simulating tape operations on a large disk
memory. Then the number of "tapes" you choose to use will be controlled by the ratio

of the speed of random transfers compared to the speed of sequential transfers.

Rocea’s 2-D F.T. Without Transposing®

The most direct method of two dimensional Fourier transformation in a computer

is the repetitive application of a one dimensional Fourier transform method. The
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easiest part is the "fast" direction, that is, if the data matrix is stored by columns -- as
in the Fortran language -- then the column transforms are a trivial exercise in repeti-
tive use of a one dimensional program. Conceptually the easiest way to handle the
transformation over the row direction is to transpose the matrix, transform each
column, and transpose back. Fabio Rocca suggested another means of Fourier
transformation over the row index which is not much more difficult conceptually but
which seems to be a more practical approach. The essential idea of Rocca's method is
this:

The data matrix can be regarded as a row vector whose entries are columns. Tak-
ing the "fast" index to range down the column, the columns may be transformed by
one-dimensional transforms either before or after the row operations are done. To do
the row operations you modify an ordinary one-dimensional Fourier transform program
by replacing each scalar add or multiply operation by the same operation upon every

element in the corresponding column.

As an illustration of the idea, a row Fourier transformation was based on the one
dimensional Fourier transformation program found in FGDP. The appropriate generali-
zation is listed in table 1. For real to complex Fourier transforms, you should beware
of the assumption that real and imaginary parts are stored contiguously. This assump-

tion is true for the column index, but not the row index.

As a practical matter, there are two important special cases. The easiest case is
when the computer memory is large enough to hold the data matrix. Some machines
have a virtual memory operating system. The program of Table 1 should be satisfac-
tory in such an environment even if the data matrix exceeds the core memory. This is

because the inner loops all run down the column index.

The less easy case is when the data matrix exceeds the memory size. Then the
matrix is stored on disk and two columns at a time are read into memory for process-
ing. A pseudo-Fortran program of Robert W. Clayton is found in SEP-15, pages 247-250.
Some comments of his on this subject follow:

"...the inner loop (or twiddle step) of the one-dimensional FT subroutine FORK (FGDP, p.
12) is:

do 50 i=m, nx, istep

ctemp= cw*cx(i+n)

ex(i+n)= cx(i)-ctemp

50 cx(i)= cx(i)+ctemp
In the two-dimensional FFT, this step would appear as (in pseudo-Fortran):
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subroutine rowce(n1,n2,cx,sign?,scale)
Try Rocca’s row Fourier Transform.
sign2 should be +1. or -1. It is the sign of i.
complex cx(nl,n2),cmplx,cw,cdel

do 05 i1=1,n1

do 05 i2=1,n2
cx(il.iR)=cx(il,i2)*scale

=1

do 30 i=1,nd

if(i.gt.j) go to 10

call twid1(n1,cx(1,i),ex(1,}))

m=ng/2

if(j.le.m) go to 30

j=j-m

m=m/2

if(m.ge.1) go to 20

j=jtm

Istep=1

istep=2*lstep

cw=1.

arg=sign2*3.14159265/Istep
cdel=cmplx{cos(arg).sin(arg))

do 80 m=1,lstep

do 50 i=m,n2.istep

call twid2(n1,cw,ex(1.i),cx(1,i+1step))
cw=cw*cdel

Istep=istep

if(Istep.lt.n2) go to 40

return :

end

subroutine twid1(n,cx,cy)
complex cx(n).cy(n).ct
do 10i=1,n

ct=cx(i)

ex(i)=cy(i)

cy(i)=ct

return

end

subroutine twid2(n,cw,cx,cy)

If you feel like optimizing, this is the place.
complex cx(n),cy(n),ctemp,cw

do 10 i=1,n

ctemp=cw*cy(i)

cy(i)=cx(i)-ctemp

ex(i)=cx(i)+ctemp

return

end

TABLE 1. Program for Fourier transformation over row index.
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do 50 i=m, nx, istep

call read('"read (i)-th column of matrix into vector a")

call read('read (i+n)-th column of matrix into vector b'")

do 45 k=1, ny

ctemp= cw*b(k)

b(k)= a(k)-ctemp
45 a(k)= a{k)+ctemp

call write("write vector a into (i-th) column of matrix")
50 call write("write vector b into (i+n)-th column of matrix")

Here "read" and "write" are input/output routines to move data in and out of core.

Some further considerations for production programs follow: The row FFI's
require logsN passes over the matrix, where N is the number of columns in the
matrix. If four or more column vectors can be held in core at one time, then the 1/0
operations can be considerably reduced by "unfolding” the innermost loop. That is,
instead of basing the twiddle step on a Fourier transform of length 2, it could be based

on lengths 4, 8, or 18, etc. This would eliminate the 1/0 operations of the intermediate
steps.

The method can be adapted for use with an array processor. The twiddle step
which contains all the floating point operations could be micro-coded for the array pro-
cessor. This would leave only the 1/0 operations for the host computer.”

Inverse Slant Stack®

The processes of slant stack and inverse slant stack find some application in
seismology, though not as much as in medical imaging. The process has 2-D Fourier

interpretation. Here we will just touch on it, not master it. Slant stack is defined by
g(t.p) = [ r(t+ph.h)dh (2)

The inverse may be represented in the Fourier domain (Thorson, SEP-14, p. 81-85) by
rtr)y = [ [[Clople™P |o]] et do dp (3)

The product of three functions in the w-domain is a convolution in the time domain.
The three functions are the slant stack g, a time shift by ph, and an |w| filter. Let-

ting g' denote the filtered slant stack, the inversion becomes
F(t.h) = [g'(t -ph)dp (4)

In practice, the result is not as clean as 2-D FT, and other techniques, such as

optimization, may be used. (See Kjartansson, SEP-20, p. 12-24.)



